Skip to main content

The Electrified Interface

  • Chapter
Modern Electrochemistry 2A

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Further Reading

Seminal

  1. W. Gibbs, Collected Works: The Scientific Papers of J. Willard Gibbs Vol 1: Thermodynamics, Dover, New York (1961).

    Google Scholar 

  2. A. Frumkin and A. Gorodetzkaya, “Electrocapillary Phenomena with Amalgams,” Z.Phys. Chem. 136: 451 (1928).

    CAS  Google Scholar 

  3. E. Lange and K. P. Miščenko, “On the Thermodynamics of Ionic Solvation,” Z.Phys. Chem. A149: 1 (1930).

    Google Scholar 

  4. R. Parsons, “Equilibrium Properties of Electrified Interphases,” in Modern Aspects of Electrochemistry, J. O’M. Bockris and B. E. Conway, eds. Vol. 1, p. 103, Butterworths, London (1954).

    Google Scholar 

  5. J. E. B. Randies, “Real Hydration Energies fromIons,” Trans. Faraday Soc. 52:1573(1956).

    Google Scholar 

  6. J. O’M. Bockris and S. D. Argade, “Work Function of Metals and the Potential at which They Have Zero Charge in Contact with Solutions,” J. Chem. Phys. 49: 5133 (1968).

    Google Scholar 

  7. S. U. M. Khan, R. C. Kainthla, and J. O’M. Bockris, “The Redox Potential and the Fermi Level in Solution,” J. Phys. Chem. 91: 5974 (1987).

    Article  CAS  Google Scholar 

Reviews

  1. R. Parsons, “The Single Electrode Potential: Its Significance and Calculation” and “Standard Electrode Potentials: Units, Conventions and Methods of Determination,” in Standard Potentials in Aqueous Solution, A. J. Bard, R. Parsons, and J. Jordan, eds. Chs. 1 and 2, Marcel Dekker, New York (1985).

    Google Scholar 

  2. S. Trasatti, “The Absolute Electrode Potential: An Explanatory Note,” Pure & Appl. Chem. 58(7): 955 (1986).

    CAS  Google Scholar 

  3. Howard Reiss, “The Absolute Electrode Potential—Tying the Loose Ends,” J. Electrochem. Soc.: Reviews and News 135: 247C (1988).

    CAS  Google Scholar 

Papers

  1. S. Trasatti, Electrochimica Acta 35(1): 269 (1990).

    Article  CAS  Google Scholar 

  2. S. Trasatti, Electrochimica Acta 36(11/12): 1659 (1991).

    CAS  Google Scholar 

  3. F. T. Wagner, in Structure of Electrified Interfaces, J. Lipkowski and P. N. Ross, eds., p. 309, VCH Publishers, New York (1993).

    Google Scholar 

  4. S. Trasatti, Russian J. Electrochem. 31(8): 713 (1995).

    CAS  Google Scholar 

  5. I. Villegas, R. Gomez, and M. J. Weaver, J. Phys. Chem. 99: 14832 (1995).

    Article  CAS  Google Scholar 

  6. N. Sato, Russian J. Electrochem. 31(8): 837 (1995).

    CAS  Google Scholar 

  7. S. Trasatti and L. M. Doubova, J. Chem. Soc. Faraday Trans. 91(19): 3311 (1995).

    Article  CAS  Google Scholar 

Seminal

  1. G. Lippmann, Ann. Chim. Phys. (Paris) 5: 494 (1875). Shows that electrocapillary curves yield surface charge.

    Google Scholar 

  2. W. Gibbs, The Scientific Papers of J. Willard Gibbs Vol. 1: Thermodynamics, Dover, New York (1961).

    Google Scholar 

  3. E. A. Guggenheim and N. K. Adam, “Thermodynamics of Adsorption at the Surface of Solutions,” Proc. Roy. Soc. (London) A139: 218 (1933).

    CAS  Google Scholar 

  4. D. C. Grahame, “The Electrical Double Layer and the Theory of Electrocapillary,” Chem. Revs. 41: 441 (1947).

    Article  CAS  Google Scholar 

  5. R. Parsons, “Equilibrium Properties of Electrified Interphases,” in Modern Aspects of Electrochemistry, J. O’M. Bockris and B. Conway, eds., Vol. 1, Butterworths London (1954).

    Google Scholar 

Reviews

  1. A. Hamelin, “The Surface State and the Potential of Zero Charge of Gold (100)-A further Assessment,” J. Electroanal. Chem. 386(1–2): 1 (1995).

    CAS  Google Scholar 

Papers

  1. J. Lipkowski and L. Stolberg, “Molecular Adsorption at Gold and Silver Electrodes,” in Adsorption of Molecules at Metal Electrodes, J. Lipkowski and P. N. Ross, eds., p. 171, VCH Publishers, New York (1992).

    Google Scholar 

  2. I. R. Peterson, Colloids and Surfaces: Physiochemical and Engineering Aspects, 102: 21 (1995).

    CAS  Google Scholar 

  3. M. J. Honeychruch and M. J. Ridd, J. Electroanal. Chem. 418(1–2): 185 (1996).

    Google Scholar 

  4. J. Dabkowski, I. Zagorska, M. Dabkowska, Z. Koczorowski, and S. Trasatti, J. Chem. Soc. Faraday Trans. 92(20): 3873 (1996).

    Article  Google Scholar 

  5. I. O. Efimov and K. E. Heusler, J. Electroanal. Chem. 414(1): 75 (1996).

    Article  CAS  Google Scholar 

  6. M. L. Foresti, M. Innocenti, and G. Pezzatini, Langmuir 12(4): 1061 (1996).

    Article  CAS  Google Scholar 

  7. M. Turowska, D. Kazmierczak, and T. Blaszczyk, Polish J. Chem. 71(2): 221 (1997).

    CAS  Google Scholar 

  8. J. H. Chen, S. H. Si, L. H. Nie, and S. Z. Yao, Electrochimica Acta 42(4): 689 (1997).

    Google Scholar 

Seminal

  1. H. L. von Helmholtz, “The Double Layer,” Wied. Ann. 7: 337 (1879).

    Google Scholar 

  2. G. Gouy, “Constitution of the Electric Charge at the Surface of an Electrolyte,” J. Physique 9: 457 (1910).

    CAS  Google Scholar 

  3. D. L. Chapman, “Diffuse Distribution of Adsorbed Ions,” Phil. Mag. 25: 475 (1913).

    Google Scholar 

  4. O. K. Rice, “Application of the Fermi Statistics to the Distribution of Electrons under Fields in Metals and the Theory of Electrocapillarity, Phys. Rev. 31: 1051 (1928).

    Article  CAS  Google Scholar 

  5. J. O’M. Bockris and M. A. Habib, “The Electron Overlap Potential at Metal-Solution Interfaces,” J. Electroanal. Chem. 68: 367 (1976).

    Google Scholar 

  6. W. Schmickler, “A Jellium-Dipole Model for the Double Layer,” Electroanal. Chem. 150: 19 (1983).

    Article  CAS  Google Scholar 

Reviews

  1. M. Philpott, “Electrochemical Contact Adsorption Site Changes Driven by Field and Charge: Fact and Theory,” in Cluster Models for Surface and Bulk Phenomena, G. Pacchioni ed., Plenum, New York (1992).

    Google Scholar 

  2. W. Schmickler, “Electronic Effects in the Electric Double Layer,” Chem. Rev. 96: 3177 (1996).

    Article  CAS  Google Scholar 

  3. J. W. Halley, “Studies of the Interdependence of Electronic and Atomic Dynamics and Structure at the Electrode-Electrolyte Interface,” Electrochim. Acta. 41: 2229 (1996).

    Article  CAS  Google Scholar 

  4. R. Parsons, “The Metal-Liquid Electrolyte Interface,” Solid State Ionics 94: 91 (1997).

    Article  CAS  Google Scholar 

Papers

  1. P. A. Rikvol, Electrochim. Acta 36: 1689 (1991).

    Google Scholar 

  2. V. Fieldman and M. Partenskii, Electrochim. Acta 36: 1703 (1991).

    Google Scholar 

  3. W. Schmickler and E. Leiva, Molecular Physics 86: 737 (1995).

    CAS  Google Scholar 

  4. X. P. Gao and H. S. White, J. Electroanal. Chem. 389: 13 (1995).

    Article  CAS  Google Scholar 

  5. S. Amokrane, Electrochim Acta 41: 2097 (1996).

    Article  CAS  Google Scholar 

  6. J. W. Halley, Electrochim. Acta 41: 2229 (1996).

    Article  CAS  Google Scholar 

  7. J. N. Glosli and J. N. Philpott, Electrochim. Acta 41: 2145 (1996).

    Article  CAS  Google Scholar 

  8. B. B. Damaskin and V. A. Safonov, Electrochim. Acta 42: 737 (1997).

    Article  CAS  Google Scholar 

  9. Y. Shingaya and M. Ito, Surface Science 386: 3 (1997).

    Article  Google Scholar 

  10. D. R. Berard, M. Kinoshita, N. M. Cann, and G. N. Patey, J. Chem. Phys. 107: 4719 (1997).

    CAS  Google Scholar 

  11. J. C. Shelley, G. N. Patey, D. R. Berard, and G. M. Torrie, J. Chem. Phys. 107: 2122 (1997).

    Article  CAS  Google Scholar 

  12. R. Kjellander and D. J. Mitchell, Molec. Phys. 91: 173 (1997).

    CAS  Google Scholar 

  13. R. D. Armstrong and B. R. Horrocks, Solid State Ionics 94: 181 (1997).

    Article  CAS  Google Scholar 

  14. B. B. Damaskin and V. A. Safonov, Electrochim. Acta. 42: 737 (1997).

    Article  CAS  Google Scholar 

Further Reading Seminal

  1. A. Frumkin and A. Gorodetzkaya, “Electrocapillary Phenomena and Layer Formation on the Surface of Liquid Gallium,” Z. Phys. Chem. (Leipzig) 136: 215 (1928).

    CAS  Google Scholar 

  2. L. Lange and K. P. Miščenko, ”On the Thermodynamics of Ionic Solvatation,” Z. Phys. Chem. (Leipzig) 149: 1 (1930).

    CAS  Google Scholar 

  3. N. F. Mott and R. J. Watts-Tobin, “The Interface Between a Metal and an Electrolyte,” Electrochim. Acta 4: 79 (1961).

    Article  CAS  Google Scholar 

  4. J. O’M. Bockris, M. A. V. Devanathan, and K. Muller, “Water Molecule Model of the Double Layer,” Proc. Roy. Soc. (London) A274: 55 (1963).

    Google Scholar 

  5. J. O’ M. Bockris and M. A. Habib, “The Contribution of the Water Dipoles to Double-Layer Properties,” Electrochim. Acta 22: 41 (1977).

    Google Scholar 

  6. M. A. Habib and J. O’M. Bockris, “Potential-Dependent Water Orientation: An In Situ Spectroscopic Study,” Langmuir 2: 388 (1986).

    Article  CAS  Google Scholar 

  7. M. A. Habib, “Solvent Dipoles at the Electrode-Solution Interface,” in Modern Aspects of Electrochemistry, B. E. Conway and J. O’M. Bockris, eds., Vol. 12, Plenum, New York (1977).

    Google Scholar 

Reviews

  1. K. Heinzinger, “Molecular Dynamics of Water at Interfaces,” in Structure of Electrified Interfaces, J. Lipkowski and P. N. Ross, eds., p. 239, VCH Publishers, New York (1993).

    Google Scholar 

  2. F. Bensebaa and T. H. Ellis, “Water at Surfaces: What Can We Learn from Vibrational Spectroscopy?” Prog. Surf. Sci. 50(1–4): 173 (1995).

    CAS  Google Scholar 

  3. J. W. Halley, “Studies of the Interdependence of Electronic and Atomic Dynamics and Structure at the Electrode-Electrolyte Interface,” Electrochim. Acta 41: 2229 (1996).

    Article  CAS  Google Scholar 

  4. R. R. Nazmutdinov and M. S. Shapnik, “Contemporary Quantum Chemical Modelling of Electrified Interfaces,” Electrochim. Acta 41: 2253 (1996).

    Article  CAS  Google Scholar 

  5. I. Benjamin, “Molecular Dynamic Simulations in Interfacial Electrochemistry,” inModern Aspects of Electrochemistry, J. O’M Bockris, B. E. Conway, and R. E. White, eds., Vol. 31, p. 115, Plenum, New York (1997).

    Google Scholar 

Papers

  1. B. B. Damaskin and A. N. Frumkin, Electrochim. Acta 19: 173 (1974).

    Article  CAS  Google Scholar 

  2. R. Parsons, J. Electroanal. Chem. 59: 229 (1975).

    Article  CAS  Google Scholar 

  3. W. R. Fawcett, J. Phys. Chem. 82: 1385 (1978).

    CAS  Google Scholar 

  4. R. Guidelli, J. Electroanl. Chem. 197: 77 (1986).

    CAS  Google Scholar 

  5. G. M. Torrie and G. N. Patey, Electrochim. Acta 36: 1677 (1991).

    Article  CAS  Google Scholar 

  6. M. Xu, P. Yang, W. Yang, and S. Pang, Vacuum 43: 1125 (1992).

    CAS  Google Scholar 

  7. F. Bensebaa and T. H. Ellis, Prog. Surf. Sci. 50(1–4): 173 (1995).

    CAS  Google Scholar 

  8. E. Spohr, G. Tóth, and K. Heinzinger, Electrochim. Acta 41: 2131 (1996).

    Article  CAS  Google Scholar 

  9. K. Ataka, T. Yotsuyanagi, and M. Osawa, J. Phys. Chem. 100: 10664 (1996).

    Article  CAS  Google Scholar 

  10. J. C. Shelley, G. N. Patey, D. R. Berard, and G. M. Torrie, J. Chem. Phys. 107: 2122 (1997).

    Article  CAS  Google Scholar 

Further Reading Seminal

  1. I. Langmuir, “The Adsorption of Gases on Plane Surfaces of Glass in Mica and Platinum,” J. Am Chem. Soc. 40: 1361 (1918).

    Article  CAS  Google Scholar 

  2. A. N. Frumkin, “Surface Tension Curves of the Higher Fatty Acids and the Equations of Conditions of the Surface Layer,” Z Physik. Chem. 116: 466 (1925).

    CAS  Google Scholar 

  3. M. Temkin, “Adsorption Equilibrium and the Kinetics of Processes on Non-Homogeneous Surfaces and in the Interaction Between Adsorbed Molecules,” Zhumal Fizichesko i Khimii 15: 296 (1941).

    CAS  Google Scholar 

  4. P. J. Flory, “Thermodynamics of High-Polymer Solutions,” J. Chem. Phys. 10: 51 (1942).

    Article  CAS  Google Scholar 

  5. M. L. Huggins, “Thermodynamic Properties of Solutions of Long Chain Compounds,” Ann. N. Y. Acad. Sci. 43: 6 (1942).

    Google Scholar 

  6. W. Lorenz and G. Salie, “Mechanism of the Electrochemical Phase Boundary Reaction,” Z Phys. Chem. (Leipzig) 218: 259 (1961).

    CAS  Google Scholar 

  7. J. O’M. Bockris, M. A. V. Devanathan, and K. Muller, “Water Molecule Model of the Double Layer,” Proc. Roy. Soc. (London) A274: 55 (1963).

    Google Scholar 

  8. K. J. Vetter and J. W. Schultze, “Experimental Determination and Interpretation of the Electrosorption Valency, γ,” J. Electroanal. Chem. 44: 63 (1973).

    Google Scholar 

  9. B. E. Conway and H. Angerstein-Kozlowska, “Interaction Effects in Electrodeposited Monolayers and the Role of the ‘Electrosorption Valency’ Factor,” J. Electroanal. Chem. 113: 63 (1980).

    Article  CAS  Google Scholar 

  10. R. Parsons, “The Contribution to the Capacity of an Electrode from a Species Adsorbed with Partial Charge Transfer,” Can. J. Chem. 59: 1898 (1981).

    CAS  Google Scholar 

  11. M. A. Habib and J. O’M. Bockris, “Adsorption at the Solid/Solution Interface,” J. Electrochem. Soc. 132: 108 (1985).

    CAS  Google Scholar 

  12. J. O’M. Bockris, M. Gamboa-Aldeco, and M. Szklarczyk, “Ionic Adsorption at the Solid-Solution Interphase using Three In Situ Methods,” J. Electroanal. Chem. 339: 355 (1992).

    Google Scholar 

Review

  1. A. J. Bard, H. D. Abruña, C. E. Chidsey, L. R. Faulkner, S. W. Feldberg, K. Itaya, M. Majda, O. Melroy, R. W. Murray, M. D. Porter, M. P. Soriaga, and H. S. White, “The Electrode/Electrolyte Interface—A Status Report,” J. Phys. Chem. 97: 7147 (1993).

    CAS  Google Scholar 

  2. J. O’M. Bockris, S. Fletcher, J. J. Gale, S. U. M. Khan, D. M. Kol, D. J. Mazur, K. Uozaki, and N. L. Weinber, “Electrochemistry (1992–1995),” in Annual Reports of the Royal Society of Chemistry, Section C, Vol. 92, p. 23 (1996).

    Google Scholar 

  3. R. Parsons, “The Metal-Liquid Electrolyte Interface,” Solid State Ionics 94: 91 (1997).

    Article  CAS  Google Scholar 

  4. J. Schultze and D. Rolle, “The Partial Discharge of Electrosorbates and Its Influence in Electrocatalysis,” Can. J. Chem. 75: 1750 (1997).

    CAS  Google Scholar 

Papers

  1. R. Parsons, Proc. Royal Soc. (London) A261: 79 (1961).

    CAS  Google Scholar 

  2. B. E. Conway, H. Angestein-Kozlowska, and H. P. Dhar, Electrochim. Acta 19: 455 (1974).

    CAS  Google Scholar 

  3. P. Nikitas, J. Electroanal. Chem. 170: 353 (1984).

    Article  Google Scholar 

  4. P. Zelenay, M. A. Habib, and J. O’M. Bockris, Langmuir 2: 393 (1986).

    Article  CAS  Google Scholar 

  5. J. Jastrzebska, M. Jurkiewicz-Herbich, and S. Trasatti, J. Electroanal. Chem. 216: 21 (1987).

    Article  CAS  Google Scholar 

  6. P. Nikitas, Electrochim. Acta 33: 647 (1988).

    CAS  Google Scholar 

  7. I. Betova, G. Neykov, R. Raicheff, and E. Lazarova, Langmuir 9: 3452 (1993).

    Article  CAS  Google Scholar 

  8. W. Schmickler, in Structure of Electrified Interfaces, J. Lipkowski and P. Ross, eds., p. 201, VCH Publishers, New York (1993).

    Google Scholar 

  9. Z. Shi, J. Lipkowski, M. Gamboa, P. Zelenay, and A. Wieckowski, J. Electroanal. Chem. 366: 317 (1994).

    Article  CAS  Google Scholar 

  10. P. A. Rikvold, M. Gamboa-Aldeco, J. Zhang, M. Han, Q. Wang, H. L. Richards, and A. Wieckowski, Surface Science 335: 389 (1995).

    Article  CAS  Google Scholar 

  11. M. Gamboa-Aldeco, K. Franaszczuk, and A. Wieckowski, in Handbook of Surface Imaging and Visualization, p. 635, CRC Press, Boca Raton, FL (1995).

    Google Scholar 

  12. P. Mrozek, Y.-E. Sung, M. Han, M. Gamboa-Aldeco, A. Wieckowski, Ch.-H. Chen, and A. Gewirth, Electrochim. Acta 40: 17 (1995).

    Article  CAS  Google Scholar 

  13. G. Pacchioni, Electrochmica Acta 41: 2285 (1996).

    CAS  Google Scholar 

  14. J. N. Glosli and M. R. Philpott, Electrochim. Acta 41: 2145 (1996).

    Article  CAS  Google Scholar 

  15. H. A. Gasteiger, N. M. Markovic, and P. N. Ross, Jr., Langmuir 12: 1414 (1996).

    Article  CAS  Google Scholar 

  16. J. J. Calvente, Z. Kováčová, R. Andreu, and W. R. Fawcett, J. Electroanal. Chem. 401: 231 (1996).

    Article  CAS  Google Scholar 

  17. Z. Shi and J. Lipkwski, J. Electroanal. Chem. 403: 225 (1996).

    Article  CAS  Google Scholar 

  18. A. Hamelin, in Nanoscale, Probes of the Solid/Liquid Interface. A. A. Gewirth and H. Siegenthaler, eds., Vol. 288, p. 285, NATO ASI Series, Series E: Applied Sciences, Reidel, Dordrecht.

    Google Scholar 

  19. B. K. Niece and A. A. Gewirth, Langmuir 13: 6302 (1997).

    Article  CAS  Google Scholar 

  20. H. Uchida, N. Dceda, and M. Watanabe, J. Electroanal. Chem. 424: 5 (1997).

    Article  CAS  Google Scholar 

  21. K. Arai, F. Kusu, K. Ohe, and K. Takamura, Electrochim. Acta 42: 2493 (1997).

    Article  CAS  Google Scholar 

Further Reading Seminal

  1. A. N. Frumkin, “The Influence of an Electric-Field on the Adsorption of Neutral Molecules,” Z. Phys. 35: 792 (1926).

    CAS  Google Scholar 

  2. E. Blomgren, J. O’M Bockris, and C. Jesch, “Adsorption of Aromatic Amines at the Interface of Mercury-Aqueous Solutions,” J. Phys. Chem. 65: 2000 (1961).

    CAS  Google Scholar 

  3. J. O’M. Bockris and K. T. Jeng, “In situ Studies of Adsorption of Organic Compounds on Platinum Electrodes,” J. Electroanal. Chem. 330: 541 (1992).

    Google Scholar 

Reviews

  1. R. Guidelli, “Molecular Models of Organic Adsorption at Metal-Water Interfaces,” in Adsorption of Molecules at Metal Electrodes, J. Lipkowski and P. N. Ross, eds., p. 1, VCH Publishers, New York (1992).

    Google Scholar 

Papers

  1. D. Krznanric, P. Valenta, H. W. Nurnberg, and M. Branica, J. Electroanal. Chem. 93: 41 (1978).

    Google Scholar 

  2. J. H. White, M. P. Soriaga, and A. T. Hubbard, J. Electroanal. Chem. 117: 89 (1984).

    Google Scholar 

  3. A. T. Hubbard, Langmuir 6: 97 (1990).

    Article  CAS  Google Scholar 

  4. E. J. Lust, K. K. Lust, and A. A. J. Jänes, Russian J. Electrochem. 31(8): 807 (1995).

    CAS  Google Scholar 

  5. E. Umbach, C. Seidel, J. Taborski, R. Li, and A. Soukopp, Phys. Stat. Sol (b) 192: 389 (1995).

    CAS  Google Scholar 

  6. V. Lazarescu, Surface Sci. 335: 227 (1995).

    Article  CAS  Google Scholar 

  7. M. H. Holzle, D. M. Kolb, D. Drznaric, and B. Cosovic, Berichte der Bunsen Gesellschaft fur Physikalische Chemie—An International J. of Phys. Chem. 100(11): 1779 (1996).

    Google Scholar 

  8. P. Nikitas, Electrochim. Acta 41(14): 2159 (1996).

    Article  CAS  Google Scholar 

  9. J. L. E. Campbell and F. C. Anson, Langmuir 12: 4008 (1996).

    Article  CAS  Google Scholar 

  10. B. N. Afanas’ev, Yu. P. Akulova, G. S. Aleksandrova, and I. A. Cherepkova, Russ. J. Electrochem. 33(7): 700 (1997).

    Google Scholar 

  11. R. J. Hamers, J. S. Hovis, S. Lee, H. Liu, and J. Shan, J. Phys. Chem. B 101(9): 1489 (1997).

    Article  CAS  Google Scholar 

  12. J. F. E. Gootzen, A. H. Wonders, A. P. Cox, W. Visscehr, and J. A. R. van Veen, J. Molec. Catalysis A: Chemical 127: 113 (1997).

    CAS  Google Scholar 

  13. Th. Dretschkow, A. S. Dakkouri, and Th. Wandlowski, Langmuir 13(10): 2844 (1997).

    Article  Google Scholar 

  14. R. H. Terrill, T. A. Tanzer, and P. W. Bohn, Langmuir 14: 845 (1998).

    Article  CAS  Google Scholar 

  15. E. Lust, A. Jänes, K. Lust, and A. Piidla, J. Electroanal. Chem. 442: 189 (1998).

    Article  CAS  Google Scholar 

Further Reading Seminal

  1. B. V. Deryaguin and L. V. Landau, “The Basic Theory of Interactions Between Colloid Particles,” Acta Physicochim. 44: 633 (1941).

    Google Scholar 

  2. E. J. W. Verwey and J. Th. G. Overbeck, Theory of the Stability of Lyophobic Colloids, Elsevier, Amsterdam (1948).

    Google Scholar 

Reviews

  1. S. S. Dukhin, “Electrochemical Characterization of the Surface of a Small Particle and Nonequilibrium Electric Surface Phenomena,” Adv. Coll. Interf. Sci. 61: 17 (1995).

    Article  CAS  Google Scholar 

  2. K. Sarmini and E. Kenndler, “Influence of Organic Solvents on the Separation Selectivity in Capillary Electrophoresis,” J. Chromatog. 792(1–2): 3 (1997).

    CAS  Google Scholar 

  3. A. M. Grancaric, T. Pusic, I. Soljacic, and V. Ribitsch, “Influence of Electrokinetic Potential on Adsorption of Cationic Surfactants,” Textile Chemist Colorist 29(12): 33 (1997).

    CAS  Google Scholar 

Modern

  1. E. Rodier and J. Dodds, Particle Systems Characterization 12(4): 198 (1995).

    CAS  Google Scholar 

  2. J. E. Sandoval and S. M. Chen, Anal. Chem. 68(17): 2771 (1996).

    Article  CAS  Google Scholar 

  3. H. G. Herz and S. K. Ratkje, Electrochm. Acta 41(1): 159 (1996).

    Google Scholar 

  4. J. C. Liu and M. C. Wu, Water Science & Technology 36(4): 127 (1997).

    Article  CAS  Google Scholar 

  5. A. Williams and G. Vigh, Anal. Chem. 69(21): 4445 (1997).

    CAS  Google Scholar 

  6. K. J. Kim, A. G. Fane, M. Nystrom, and A. Pihlajamaki, J. Membrane Sci. 134(2): 199 (1997).

    Article  CAS  Google Scholar 

  7. A. Szymczyk, A. Pierre, J. C. Reggiani, and J. Pagetti, J. Membrane Sci. 134(1): 59 (1997).

    Article  CAS  Google Scholar 

  8. M. Pontie, X. Chasseray, D. Lemordant, and J. M. Laine, J. Membrane Sci. 129(1): 125 (1997).

    Article  CAS  Google Scholar 

  9. T. Jimbo, T. M. Higa, N. Minoura, and A. Tanioka, Macromolecules 31(4): 1277 (1998).

    Article  CAS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

(2002). The Electrified Interface. In: Modern Electrochemistry 2A. Springer, Boston, MA. https://doi.org/10.1007/0-306-47605-3_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-47605-3_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46166-8

  • Online ISBN: 978-0-306-47605-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics