Skip to main content

Adenosine Deaminase-Deficient Mice: Models for the Study of Lymphocyte Development and Adenosine Signaling

  • Chapter
Purine and Pyrimidine Metabolism in Man X

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 486))

Conclusions

PEG-ADA treatment of ADA-deficient mice will serve as a useful in vivo system to biochemically manipulate adenosine levels and signaling. The fact that correction of adenosine levels corresponds with relief of the pulmonary distress, but not immune dysfunction, in ADA-deficient mice suggests that hyperactive adenosine signaling influences the eosinophilia, elevated IgE levels, alveolar defects, and severe inflammation and damage seen in the lungs of the mice. 26

High adenosine levels in bronchial alveolar lavage fluid (BALF) of asthmatics and other evidence strongly links dysfunctional adenosine signaling to asthma, chronic obstructive pulmonary disease (COPD), and other pulmonary disorders27. It is likely that other phenotypical features seen in ADA deficiency may have abnormal adenosine signaling as their effector. Just as varying concentrations of antigen binding to the T cell receptor (TCR) complex determine the destiny of a T cell (apoptosis, anergy, activation, or proliferation), varying amounts of adenosine interacting with adenosine receptors could affect the survival or actions of cells expressing the receptors. ADA-deficient mice, treated with varying regimens of PEG-ADA, will provide an ideal model in which to study adenosine signaling through adenosine receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirschhorn, R. (1999). Immunodeficiency disease due to deficiency of adenosine deaminase. In Ochs, H.D., Smith, C.I.E., and Puck, J.M., eds. Primary Immunodeficiency Diseases. New York: Oxford University Press, pp. 121–139.

    Google Scholar 

  2. Budihardjo, I., Oliver, H., Lutter, M., Luo, X., and Wang, X. (1999). Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15:269–290.

    Article  CAS  PubMed  Google Scholar 

  3. Hershfield, M.S., Kredich, N.M., Ownby, D.R., Ownby, H., and Buckley, R. (1979). In vivo inactivation of erythrocyte S-adenosylhomocysteine hydrolase by 2′-deoxyadenosine in adenosine deaminase-deficient patients. J. Clin. Invest. 63:807–11.

    CAS  PubMed  Google Scholar 

  4. Giblett, E.R., Anderson, J.E., Cohen, F., Pollara, B. and Meuwissen, H.J. (1972). Adenosine deaminase deficiency in two patients with severely impaired cellular immunity. Lancet 2:1067–9.

    CAS  PubMed  Google Scholar 

  5. Liang BT (1997). Protein kinase C-mediated preconditioning of cardiac myocytes: role of adenosine receptor and KATP channel. Am. J. Physiol. 273:H847–53.

    CAS  PubMed  Google Scholar 

  6. Mironov SL, Langohr K, Richter DW (1999). Al adenosine receptors modulate respiratory activity of the neonatal mouse via the cAMP-mediated signaling pathway. J. Neurophysiol. 81(1):247–55.

    CAS  PubMed  Google Scholar 

  7. Dunwiddie, TV and Fredholm, EB (1999). Adenosine Neuromodulation. in Purinergic Approaches in Experimental Therapeutics, eds. K.A. Jacobson and M.F. Jarvis. Wiley-Liss, Inc. Danvers, MA. pp. 359–382.

    Google Scholar 

  8. Jackson EK (1997). Renal glomerular filtration rate markedly reduces when renal Al adenosine receptors are activated. in Purinergic Approaches in Experimental Therapeutics, eds. K.A. Jacobson and M.F. Jarvis. Wiley-Liss, Inc. Danvers, MA. pp.217–250.

    Google Scholar 

  9. Koshiba M, Rosin DL, Hayashi N, Linden J, and Sitkovsky MV (1999). Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometric studies with anti-A2A receptor monoclonal antibodies. Mol. Pharmacol. 55(3):614–24.

    CAS  PubMed  Google Scholar 

  10. Olah, ME and Stiles, GL (1995). Adenosine receptor subtypes: characterization and therapeutic regulation. Annu. Rev. Pharmacol. Toxicol. 35:581–606.

    Article  CAS  PubMed  Google Scholar 

  11. Baraldi PG, Cacciari B, Romagnoli R, Merighi S, Varani K, Borea PA, and Spalluto G. (2000). A3 adenosine receptor ligands: history and perspectives. Med. Res. Rev. 20(2):103–128.

    Article  CAS  PubMed  Google Scholar 

  12. Gessi S, Varani K, Merighi S, Ongini E, Borea 6PA (2000). A2A adenosine receptors in human peripheral blood cells. British Journal of Pharmacology 129:2–11.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Z, Makaritsis K, Francis CE, Gavras H, and Ravid K (2000). A role for the A3 adenosine receptor in determining tissue levels of cAMP and blood pressure: studies in knock-out mice. Biochim Biophys Acta 1500(3):280–90.

    CAS  PubMed  Google Scholar 

  14. Ledent C, Vaugeouis JM, Schiffmann SN, Pedrazzini T, El Yacoubi M, Vanderhaeghen JJ, Costentin J, Heath JK, Vassart G, and Parmentier M (1997). Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2 a receptor. Nature 388(6443):674–8.

    CAS  PubMed  Google Scholar 

  15. Buckley, R.H., Schiff, R.I., Schiff, S.E., Markert, M.L., Williams, L.W., Harville, T.O., Roberts, J.L., and Puck, J.M. (1997). Human severe combined immunodeficiency: genetic, phenotypic, and functional diversity in one hundred eight infants. J. Pediatr. 130, 378–387.

    CAS  PubMed  Google Scholar 

  16. Cederbaum, S.D., Kaitila, I., Rimoin, D.L., and Stiehm, E.R. (1976). The chondroosseous dysplasia of adenosine deaminase deficiency with severe combined immunodeficiency. J. Pediatr. 89, 737–742.

    CAS  PubMed  Google Scholar 

  17. Bollinger, M.E., Arrendondo-Vega, F.X., Santisteban, I., Schwarz, K., Hershfield, M.S., and Lederman, H.M. (1996). Hepatic dysfunction as a complication of adenosine deaminase deficiency. N. Engl. J. Med. 334:1367–1371.

    Article  PubMed  Google Scholar 

  18. Hershfield, M.S. and Mitchell, B.S. (1995). Immunodeficiency diseases caused by adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency. In Scriver, C.M., Beaudet, A.L., Sly, W., Valle, D., eds. Metabolic and Molecular Basis of Inherited Disease, 7th ed. New York: McGraw Hill, pp. 1725–1768.

    Google Scholar 

  19. Hirschhorn, R., Papageorgiou, P., Kesarwala, H., and Taft, L.T. (1980). Amelioration of neurological abnormalities after “enzyme replacement” in adenosine deaminase deficiency. N. Engl. J. Med. 303:377–380.

    CAS  PubMed  Google Scholar 

  20. Morgan, G., Levinsky, R.J., Hugh-Jones, K., Fairbanks, L.D., Morris, G.S., and Simmonds, H.A. (1987). Heterogeneity of biochemical, clinical and immunological parameters in severe combined immunodeficiency due to adenosine deaminase deficiency. Clin. Exp. Immunol. 70:491–499.

    CAS  PubMed  Google Scholar 

  21. Hershfield, M.S., Buckley, R.H., Greenberg, M.L., Melton, A.L., Schiff, R., Hatem, C., Kurtzberg, J., Markert, M.L., Kobayashi, R.H., Kobayashi, A.L. and Abuchowski, A. (1987). Treatment of adenosine deaminase deficiency with polyethylene glycol-modified adenosine deaminase. N. Engl. J. Med. 316:589–596.

    CAS  PubMed  Google Scholar 

  22. Wakamiya, M., Blackburn, M.R., Jurecic, R., McArthur, M.J., Gieske, R.S., Cartwright, J., Mitani, K., Vaishnav, S., Belmont, J.J., Kellems, R.E., Finegold, M.J., Montgomery, C.A., Bradley, A., and Caskey, C.T. (1995). Disruption of the adenosine deaminase gene causes hepatocellular impairment and perinatal lethality in mice. Proc. Natl. Acad. Sci. USA 92:3673–3677.

    CAS  PubMed  Google Scholar 

  23. Migchielson, A.A.J., Breuer, M.L., van Roon, M.A., te Riele, H., Surcher, C., Ossendorp, F., Toutain, S., Hershfield, M.S., Berns, A., and Valerio, D. (1995). Adenosine-deaminase-deficient mice die perinatally and exhibit liver-cell degeneration, electasis and small intestinal cell death. Nat. Genet. 10:279–287.

    Google Scholar 

  24. Knudsen, T.B., Blackburn, M.R., Chinsky, J.M., Airhart, M.J., and Kellems, R.E. (1991). Ontogeny of adenosine deaminase in the mouse decidua and placenta: immunolocalization and embryo transfer studies. Biol. Reprod. 44:171–84.

    Article  CAS  PubMed  Google Scholar 

  25. Blackburn, M.R., Datta, S.K., and Kellems, R.E. (1998). Adenosine deaminase-deficient mice generated using a two-step genetic engineering strategy exhibit a combined immunodeficiency. J. Biol. Chem. 273:5093–5100.

    Article  CAS  PubMed  Google Scholar 

  26. Blackburn, M.R., Volmer, J.B., Thrasher, J.L., Zhong, H., Crosby, J.R., Lee, J.J., and Kellems, R.E. (2000). Metabolic consequences of adenosine deaminase deficiency in mice are associated with defects in alveogenesis, pulmonary inflammation, and airway obstruction. J. Exp. Med. 192(2):1–13.

    Article  Google Scholar 

  27. Jacobson, MA and Bai, TR (1997). The role of adenosine in asthma. In Purinergic Approaches in Experimental Therapeutics, eds. K.A. Jacobson and M.F. Jarvis. Wiley-Liss, Inc. Danvers, MA. pp.315–331.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Aldrich, M.B., Blackburn, M.R., Datta, S.K., Kellems, R.E. (2002). Adenosine Deaminase-Deficient Mice: Models for the Study of Lymphocyte Development and Adenosine Signaling. In: Zoref-Shani, E., Sperling, O. (eds) Purine and Pyrimidine Metabolism in Man X. Advances in Experimental Medicine and Biology, vol 486. Springer, Boston, MA. https://doi.org/10.1007/0-306-46843-3_11

Download citation

  • DOI: https://doi.org/10.1007/0-306-46843-3_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46515-4

  • Online ISBN: 978-0-306-46843-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics