Skip to main content
Log in

Pediatric Hypothyroidism: Diagnosis and Treatment

  • Therapy in Practice
  • Published:
Pediatric Drugs Aims and scope Submit manuscript

Abstract

Thyroid hormone has important physiologic functions in nearly every organ system. The critical role of thyroid hormone in growth and in physical and neurologic development lends particular importance to the prompt diagnosis and appropriate treatment of hypothyroidism in infants and children. Congenital hypothyroidism is common and has potentially devastating neurologic consequences. While the approach to diagnosis and treatment of severe congenital hypothyroidism is well established, data continue to emerge about the genetic causes, clinical significance, and prognosis of the milder forms of congenital hypothyroidism that are increasingly being diagnosed by newborn screening. Similarly, the diagnosis and treatment of severe acquired hypothyroidism is straightforward and clearly of clinical benefit, but uncertainty remains about the optimal management of mild subclinical hypothyroidism. This review summarizes current knowledge of the causes, clinical manifestations, diagnosis, treatment, and prognosis of hypothyroidism in infants and children, with a focus on recent developments and areas of uncertainty in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fisher DA, Dussault JH, Foley TP Jr, Klein AH, LaFranchi S, Larsen PR, et al. Screening for congenital hypothyroidism: results of screening one million North American infants. J Pediatr. 1979;94(5):700–5.

    Article  CAS  PubMed  Google Scholar 

  2. Ford G, LaFranchi SH. Screening for congenital hypothyroidism: a worldwide view of strategies. Best Pract Res Clin Endocrinol Metab. 2014;28(2):175–87.

    Article  CAS  PubMed  Google Scholar 

  3. Deladoey J, Ruel J, Giguere Y, Van Vliet G. Is the incidence of congenital hypothyroidism really increasing? A 20-year retrospective population-based study in Quebec. J Clin Endocrinol Metab. 2011;96(8):2422–9.

    Article  CAS  PubMed  Google Scholar 

  4. Olivieri A, Fazzini C, Medda E. Collaborators. Multiple factors influencing the incidence of congenital hypothyroidism detected by neonatal screening. Horm Res. Paediatr. 2015;83(2):86–93.

    CAS  Google Scholar 

  5. van Trotsenburg AS, Vulsma T, van Santen HM, Cheung W, de Vijlder JJ. Lower neonatal screening thyroxine concentrations in down syndrome newborns. J Clin Endocrinol Metab. 2003;88(4):1512–5.

    Article  PubMed  Google Scholar 

  6. Chiesa A, Prieto L, Mendez V, Papendieck P, Calcagno Mde L, Gruneiro-Papendieck L. Prevalence and etiology of congenital hypothyroidism detected through an argentine neonatal screening program (1997–2010). Horm Res Paediatr. 2013;80(3):185–92.

    Article  CAS  PubMed  Google Scholar 

  7. Perry R, Heinrichs C, Bourdoux P, Khoury K, Szots F, Dussault JH, et al. Discordance of monozygotic twins for thyroid dysgenesis: implications for screening and for molecular pathophysiology. J Clin Endocrinol Metab. 2002;87(9):4072–7.

    Article  CAS  PubMed  Google Scholar 

  8. Nettore IC, Cacace V, De Fusco C, Colao A, Macchia PE. The molecular causes of thyroid dysgenesis: a systematic review. J Endocrinol Invest. 2013;36(8):654–64.

    CAS  PubMed  Google Scholar 

  9. Grasberger H, Refetoff S. Genetic causes of congenital hypothyroidism due to dyshormonogenesis. Curr Opin Pediatr. 2011;23(4):421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nicholas AK, Serra EG, Cangul H, Alyaarubi S, Ullah I, Schoenmakers E, et al. Comprehensive screening of eight known causative genes in congenital hypothyroidism with gland-in-situ. J Clin Endocrinol Metab. 2016;101(12):4521–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Narumi S, Muroya K, Asakura Y, Aachi M, Hasegawa T. Molecular basis of thyroid dyshormonogenesis: genetic screening in population-based Japanese patients. J Clin Endocrinol Metab. 2011;96(11):E1838–42.

    Article  CAS  PubMed  Google Scholar 

  12. Fu C, Wang J, Luo S, Yang Q, Li Q, Zheng H, et al. Next-generation sequencing analysis of TSHR in 384 Chinese subclinical congenital hypothyroidism (CH) and CH patients. Clin Chim Acta. 2016;01(462):127–32.

    Article  Google Scholar 

  13. Park KJ, Park HK, Kim YJ, Lee KR, Park JH, Park JH, et al. DUOX2 mutations are frequently associated with congenital hypothyroidism in the Korean population. Ann Lab Med. 2016;36(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  14. Belfort MB, Pearce EN, Braverman LE, He X, Brown RS. Low iodine content in the diets of hospitalized preterm infants. J Clin Endocrinol Metab. 2012;97(4):E632–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ahmet A, Lawson ML, Babyn P, Tricco AC. Hypothyroidism in neonates post-iodinated contrast media: a systematic review. Acta Paediatr. 2009;98(10):1568–74.

    Article  CAS  PubMed  Google Scholar 

  16. Linder N, Davidovitch N, Reichman B, Kuint J, Lubin D, Meyerovitch J, et al. Topical iodine-containing antiseptics and subclinical hypothyroidism in preterm infants. J Pediatr. 1997;131(3):434–9.

    Article  CAS  PubMed  Google Scholar 

  17. Williams FL, Watson J, Day C, Soe A, Somisetty SK, Jackson L, et al. Thyroid dysfunction in preterm neonates exposed to iodine. J Perinat Med. 2017;45(1):135–43.

    Article  CAS  PubMed  Google Scholar 

  18. Thaker VV, Leung AM, Braverman LE, Brown RS, Levine B. Iodine-induced hypothyroidism in full-term infants with congenital heart disease: more common than currently appreciated? J Clin Endocrinol Metab. 2014;99(10):3521–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chung HR, Shin CH, Yang SW, Choi CW, Kim BI. Subclinical hypothyroidism in Korean preterm infants associated with high levels of iodine in breast milk. J Clin Endocrinol Metab. 2009;94(11):4444–7.

    Article  CAS  PubMed  Google Scholar 

  20. Connelly KJ, Boston BA, Pearce EN, Sesser D, Snyder D, Braverman LE, et al. Congenital hypothyroidism caused by excess prenatal maternal iodine ingestion. J Pediatr. 2012;161(4):760–2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lee HJ, Li CW, Hammerstad SS, Stefan M, Tomer Y. Immunogenetics of autoimmune thyroid diseases: a comprehensive review. J Autoimmun. 2015;64:82–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barr ML, Chiu HK, Li N, Yeh MW, Rhee CM, Casillas J, et al. Thyroid dysfunction in children exposed to iodinated contrast media. J Clin Endocrinol Metab. 2016;101(6):2366–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ohye H, Fukata S, Hishinuma A, Kudo T, Nishihara E, Ito M, et al. A novel homozygous missense mutation of the dual oxidase 2 (DUOX2) gene in an adult patient with large goiter. Thyroid. 2008;18(5):561–6.

    Article  CAS  PubMed  Google Scholar 

  24. Huang SA, Tu HM, Harney JW, Venihaki M, Butte AJ, Kozakewich HP, et al. Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med. 2000;343(3):185–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lanting CI, van Tijn DA, Loeber JG, Vulsma T, de Vijlder JJ, Verkerk PH. Clinical effectiveness and cost-effectiveness of the use of the thyroxine/thyroxine-binding globulin ratio to detect congenital hypothyroidism of thyroidal and central origin in a neonatal screening program. Pediatrics. 2005;116(1):168–73.

    Article  PubMed  Google Scholar 

  26. Hanna CE, Krainz PL, Skeels MR, Miyahira RS, Sesser DE, LaFranchi SH. Detection of congenital hypopituitary hypothyroidism: ten-year experience in the northwest regional screening program. J Pediatr. 1986;109(6):959–64.

    Article  CAS  PubMed  Google Scholar 

  27. Persani L. Central hypothyroidism: pathogenic, diagnostic, and therapeutic challenges. J Clin Endocrinol Metab. 2012;97(9):3068–78.

    Article  CAS  PubMed  Google Scholar 

  28. Schoenmakers N, Alatzoglou KS, Chatterjee VK, Dattani MT. Recent advances in central congenital hypothyroidism. J Endocrinol. 2015;227(3):R51–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. van Tijn DA, de Vijlder JJ, Verbeeten B Jr, Verkerk PH, Vulsma T. Neonatal detection of congenital hypothyroidism of central origin. J Clin Endocrinol Metab. 2005;90(6):3350–9.

    Article  PubMed  Google Scholar 

  30. Collu R, Tang J, Castagne J, Lagace G, Masson N, Huot C, et al. A novel mechanism for isolated central hypothyroidism: inactivating mutations in the thyrotropin-releasing hormone receptor gene. J Clin Endocrinol Metab. 1997;82(5):1561–5.

    CAS  PubMed  Google Scholar 

  31. Nicholas AK, Jaleel S, Lyons G, Schoenmakers E, Dattani MT, Crowne E, et al. Molecular spectrum of TSHbeta subunit gene defects in central hypothyroidism in the UK and Ireland. Clin Endocrinol (Oxf). 2017;86(3):410–8.

    Article  CAS  Google Scholar 

  32. Joustra SD, Schoenmakers N, Persani L, Campi I, Bonomi M, Radetti G, et al. The IGSF1 deficiency syndrome: characteristics of male and female patients. J Clin Endocrinol Metab. 2013;98(12):4942–52.

    Article  CAS  PubMed  Google Scholar 

  33. Heinen CA, Losekoot M, Sun Y, Watson PJ, Fairall L, Joustra SD, et al. Mutations in TBL1X are associated with central hypothyroidism. J Clin Endocrinol Metab. 2016;101(12):4564–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rovet JF. The role of thyroid hormones for brain development and cognitive function. Endocr Dev. 2014;26:26–43.

    Article  CAS  PubMed  Google Scholar 

  35. LaFranchi SH, Hanna CE, Krainz PL, Skeels MR, Miyahira RS, Sesser DE. Screening for congenital hypothyroidism with specimen collection at two time periods: results of the northwest regional screening program. Pediatrics. 1985;76(5):734–40.

    CAS  PubMed  Google Scholar 

  36. Ford GA, Denniston S, Sesser D, Skeels MR, LaFranchi SH. Transient versus permanent congenital hypothyroidism after the age of 3 years in infants detected on the first versus second newborn screening test in Oregon, USA. Horm Res Paediatr. 2016;86(3):169–77.

    Article  CAS  PubMed  Google Scholar 

  37. Van Wyk JJ, Grumbach MM. Syndrome of precocious menstruation and galactorrhea in juvenile hypothyroidism: an example of hormonal overlap in pituitary feedback. J Pediatr. 1960;57(3):416–35.

    Article  Google Scholar 

  38. Franks RC, Stempfel RS Jr. Juvenile hypothyroidism and precocious testicular maturation. J Clin Endocrinol Metab. 1963;23:805–10.

    Article  CAS  PubMed  Google Scholar 

  39. Anasti JN, Flack MR, Froehlich J, Nelson LM, Nisula BC. A potential novel mechanism for precocious puberty in juvenile hypothyroidism. J Clin Endocrinol Metab. 1995;80(1):276–9.

    CAS  PubMed  Google Scholar 

  40. Elmlinger MW, Kuhnel W, Lambrecht HG, Ranke MB. Reference intervals from birth to adulthood for serum thyroxine (T4), triiodothyronine (T3), free T3, free T4, thyroxine binding globulin (TBG) and thyrotropin (TSH). Clin Chem Lab Med CCLM FESCC. 2001;39(10):973–9.

    CAS  Google Scholar 

  41. Chaler EA, Fiorenzano R, Chilelli C, Llinares V, Areny G, Herzovich V, et al. Age-specific thyroid hormone and thyrotropin reference intervals for a pediatric and adolescent population. Clin Chem Lab Med CCLM FESCC. 2012;50(5):885–90.

    CAS  Google Scholar 

  42. Bailey D, Colantonio D, Kyriakopoulou L, Cohen AH, Chan MK, Armbruster D, et al. Marked biological variance in endocrine and biochemical markers in childhood: establishment of pediatric reference intervals using healthy community children from the CALIPER cohort. Clin Chem. 2013;59(9):1393–405.

    Article  CAS  PubMed  Google Scholar 

  43. Fliers E, Bianco AC, Langouche L, Boelen A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol. 2015;3(10):816–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. La Gamma EF, Paneth N. Clinical importance of hypothyroxinemia in the preterm infant and a discussion of treatment concerns. Curr Opin Pediatr. 2012;24(2):172–80.

    Article  PubMed  Google Scholar 

  45. Woo HC, Lizarda A, Tucker R, Mitchell ML, Vohr B, Oh W, et al. Congenital hypothyroidism with a delayed thyroid-stimulating hormone elevation in very premature infants: incidence and growth and developmental outcomes. J Pediatr. 2011;158(4):538–42.

    Article  CAS  PubMed  Google Scholar 

  46. Williams FL, Simpson J, Delahunty C, Ogston SA, Bongers-Schokking JJ, Murphy N, et al. Developmental trends in cord and postpartum serum thyroid hormones in preterm infants. J Clin Endocrinol Metab. 2004;89(11):5314–20.

    Article  CAS  PubMed  Google Scholar 

  47. Rabbiosi S, Vigone MC, Cortinovis F, Zamproni I, Fugazzola L, Persani L, et al. Congenital hypothyroidism with eutopic thyroid gland: analysis of clinical and biochemical features at diagnosis and after re-evaluation. J Clin Endocrinol Metab. 2013;98(4):1395–402.

    Article  CAS  PubMed  Google Scholar 

  48. Castanet M, Goischke A, Leger J, Thalassinos C, Rodrigue D, Cabrol S, et al. Natural history and management of congenital hypothyroidism with in situ thyroid gland. Horm Res Paediatr. 2015;83(2):102–10.

    Article  CAS  PubMed  Google Scholar 

  49. Wassner AJ, Brown RS. Congenital hypothyroidism: recent advances. Curr Opin Endocrinol Diabetes Obes. 2015;22(5):407–12.

    Article  CAS  PubMed  Google Scholar 

  50. Brown RS, Alter CA, Sadeghi-Nejad A. Severe unsuspected maternal hypothyroidism discovered after the diagnosis of thyrotropin receptor-blocking antibody-induced congenital hypothyroidism in the neonate: failure to recognize and implications to the fetus. Horm Res Paediatr. 2015;83(2):132–5.

    Article  CAS  PubMed  Google Scholar 

  51. Brown RS, Bellisario RL, Botero D, Fournier L, Abrams CA, Cowger ML, et al. Incidence of transient congenital hypothyroidism due to maternal thyrotropin receptor-blocking antibodies in over one million babies. J Clin Endocrinol Metab. 1996;81(3):1147–51.

    CAS  PubMed  Google Scholar 

  52. Jonklaas J, Bianco AC, Bauer AJ, Burman KD, Cappola AR, Celi FS, et al. Guidelines for the treatment of hypothyroidism: prepared by the American Thyroid Association task force on thyroid hormone replacement. Thyroid. 2014;24(12):1670–751.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Carswell JM, Gordon JH, Popovsky E, Hale A, Brown RS. Generic and brand-name l-thyroxine are not bioequivalent for children with severe congenital hypothyroidism. J Clin Endocrinol Metab. 2013;98(2):610–7.

    Article  CAS  PubMed  Google Scholar 

  54. Chorazy PA, Himelhoch S, Hopwood NJ, Greger NG, Postellon DC. Persistent hypothyroidism in an infant receiving a soy formula: case report and review of the literature. Pediatrics. 1995;96(1 Pt 1):148–50.

    CAS  PubMed  Google Scholar 

  55. Conrad SC, Chiu H, Silverman BL. Soy formula complicates management of congenital hypothyroidism. Arch Dis Child. 2004;89(1):37–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Virili C, Bassotti G, Santaguida MG, Iuorio R, Del Duca SC, Mercuri V, et al. Atypical celiac disease as cause of increased need for thyroxine: a systematic study. J Clin Endocrinol Metab. 2012;97(3):E419–22.

    Article  CAS  PubMed  Google Scholar 

  57. Bianco AC, Casula S. Thyroid hormone replacement therapy: three ‘simple’ questions, complex answers. Eur Thyroid J. 2012;1(2):88–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Panicker V, Saravanan P, Vaidya B, Evans J, Hattersley AT, Frayling TM, et al. Common variation in the DIO2 gene predicts baseline psychological well-being and response to combination thyroxine plus triiodothyronine therapy in hypothyroid patients. J Clin Endocrinol Metab. 2009;94(5):1623–9.

    Article  CAS  PubMed  Google Scholar 

  59. Grozinsky-Glasberg S, Fraser A, Nahshoni E, Weizman A, Leibovici L. Thyroxine-triiodothyronine combination therapy versus thyroxine monotherapy for clinical hypothyroidism: meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2006;91(7):2592–9.

    Article  CAS  PubMed  Google Scholar 

  60. Leger J, Olivieri A, Donaldson M, Torresani T, Krude H, van Vliet G, et al. European Society for Paediatric Endocrinology consensus guidelines on screening, diagnosis, and management of congenital hypothyroidism. Horm Res Paediatr. 2014;81(2):80–103.

    Article  CAS  PubMed  Google Scholar 

  61. Bongers-Schokking JJ, Koot HM, Wiersma D, Verkerk PH, de Muinck Keizer-Schrama SM. Influence of timing and dose of thyroid hormone replacement on development in infants with congenital hypothyroidism. J Pediatr. 2000;136(3):292–7.

    Article  CAS  PubMed  Google Scholar 

  62. Rose SR, Brown RS, Foley T, Kaplowitz PB, Kaye CI, Sundararajan S, et al. Update of newborn screening and therapy for congenital hypothyroidism. Pediatrics. 2006;117(6):2290–303.

    Article  PubMed  Google Scholar 

  63. Grosse SD, Van Vliet G. Prevention of intellectual disability through screening for congenital hypothyroidism: how much and at what level? Arch Dis Child. 2011;96(4):374–9.

    Article  PubMed  Google Scholar 

  64. Trumpff C, De Schepper J, Vanderfaeillie J, Vercruysse N, Van Oyen H, Moreno-Reyes R, et al. Neonatal thyroid-stimulating hormone concentration and psychomotor development at preschool age. Arch Dis Child. 2016;101(12):1100–6.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Lain SJ, Bentley JP, Wiley V, Roberts CL, Jack M, Wilcken B, et al. Association between borderline neonatal thyroid-stimulating hormone concentrations and educational and developmental outcomes: a population-based record-linkage study. Lancet Diabetes Endocrinol. 2016;4(9):756–65.

    Article  CAS  PubMed  Google Scholar 

  66. Bakker B, Kempers MJ, De Vijlder JJ, Van Tijn DA, Wiedijk BM, Van Bruggen M, et al. Dynamics of the plasma concentrations of TSH, FT4 and T3 following thyroxine supplementation in congenital hypothyroidism. Clin Endocrinol (Oxf). 2002;57(4):529–37.

    Article  CAS  Google Scholar 

  67. Selva KA, Harper A, Downs A, Blasco PA, Lafranchi SH. Neurodevelopmental outcomes in congenital hypothyroidism: comparison of initial T4 dose and time to reach target T4 and TSH. J Pediatr. 2005;147(6):775–80.

    Article  CAS  PubMed  Google Scholar 

  68. Kempers MJ, van der Sluijs Veer L, Nijhuis-van der Sanden MW, Kooistra L, Wiedijk BM, Faber I, et al. Intellectual and motor development of young adults with congenital hypothyroidism diagnosed by neonatal screening. J Clin Endocrinol Metab. 2006;91(2):418–24.

    Article  CAS  PubMed  Google Scholar 

  69. Vaidyanathan P, Pathak M, Kaplowitz PB. In congenital hypothyroidism, an initial L-thyroxine dose of 10-12 mug/kg/day is sufficient and sometimes excessive based on thyroid tests 1 month later. J Pediatr Endocrinol Metab. 2012;25(9–10):849–52.

    CAS  PubMed  Google Scholar 

  70. Bongers-Schokking JJ, Resing WC, de Rijke YB, de Ridder MA, de Muinck Keizer-Schrama SM. Cognitive development in congenital hypothyroidism: is overtreatment a greater threat than undertreatment? J Clin Endocrinol Metab. 2013;98(11):4499–506.

    Article  CAS  PubMed  Google Scholar 

  71. Bongers-Schokking JJ, de Muinck Keizer-Schrama SM. Influence of timing and dose of thyroid hormone replacement on mental, psychomotor, and behavioral development in children with congenital hypothyroidism. J Pediatr. 2005;147(6):768–74.

    Article  CAS  PubMed  Google Scholar 

  72. Simoneau-Roy J, Marti S, Deal C, Huot C, Robaey P, Van Vliet G. Cognition and behavior at school entry in children with congenital hypothyroidism treated early with high-dose levothyroxine. J Pediatr. 2004;144(6):747–52.

    Article  CAS  PubMed  Google Scholar 

  73. Rovet JF. Congenital hypothyroidism: long-term outcome. Thyroid. 1999;9(7):741–8.

    Article  CAS  PubMed  Google Scholar 

  74. Leger J. Congenital hypothyroidism: a clinical update of long-term outcome in young adults. Eur J Endocrinol. 2015;172(2):R67–77.

    Article  CAS  PubMed  Google Scholar 

  75. Lichtenberger-Geslin L, Dos Santos S, Hassani Y, Ecosse E, Van Den Abbeele T, Leger J. Factors associated with hearing impairment in patients with congenital hypothyroidism treated since the neonatal period: a national population-based study. J Clin Endocrinol Metab. 2013;98(9):3644–52.

    Article  CAS  PubMed  Google Scholar 

  76. Rovet JF, Daneman D, Bailey JD. Psychologic and psychoeducational consequences of thyroxine therapy for juvenile acquired hypothyroidism. J Pediatr. 1993;122(4):543–9.

    Article  CAS  PubMed  Google Scholar 

  77. Van Dop C, Conte FA, Koch TK, Clark SJ, Wilson-Davis SL, Grumbach MM. Pseudotumor cerebri associated with initiation of levothyroxine therapy for juvenile hypothyroidism. N Engl J Med. 1983;308(18):1076–80.

    Article  PubMed  Google Scholar 

  78. Lomenick JP, El-Sayyid M, Smith WJ. Effect of levo-thyroxine treatment on weight and body mass index in children with acquired hypothyroidism. J Pediatr. 2008;152(1):96–100.

    Article  CAS  PubMed  Google Scholar 

  79. Rivkees SA, Bode HH, Crawford JD. Long-term growth in juvenile acquired hypothyroidism: the failure to achieve normal adult stature. N Engl J Med. 1988;318(10):599–602.

    Article  CAS  PubMed  Google Scholar 

  80. Lazarus J, Brown RS, Daumerie C, Hubalewska-Dydejczyk A, Negro R, Vaidya B. 2014 European thyroid association guidelines for the management of subclinical hypothyroidism in pregnancy and in children. Eur Thyroid J. 2014;3(2):76–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lazar L, Frumkin RB, Battat E, Lebenthal Y, Phillip M, Meyerovitch J. Natural history of thyroid function tests over 5 years in a large pediatric cohort. J Clin Endocrinol Metab. 2009;94(5):1678–82.

    Article  CAS  PubMed  Google Scholar 

  82. Schuschan-Eisen I, Lazar L, Amitai N, Meyerovitch J. Hyperthyrotropinemia in healthy infants during the first year of life. J Pediatr. 2016;170:120–5.

    Article  Google Scholar 

  83. Reuss ML, Paneth N, Pinto-Martin JA, Lorenz JM, Susser M. The relation of transient hypothyroxinemia in preterm infants to neurologic development at two years of age. N Engl J Med. 1996;334(13):821–7.

    Article  CAS  PubMed  Google Scholar 

  84. van Wassenaer AG, Kok JH, de Vijlder JJ, Briet JM, Smit BJ, Tamminga P, et al. Effects of thyroxine supplementation on neurologic development in infants born at less than 30 weeks’ gestation. N Engl J Med. 1997;336(1):21–6.

    Article  PubMed  Google Scholar 

  85. van Wassenaer AG, Westera J, Houtzager BA, Kok JH. Ten-year follow-up of children born at <30 weeks’ gestational age supplemented with thyroxine in the neonatal period in a randomized, controlled trial. Pediatrics. 2005;116(5):e613–8.

    Article  PubMed  Google Scholar 

  86. Hollanders JJ, Israels J, van der Pal SM, Verkerk PH, Rotteveel J, Finken MJ, et al. No association between transient hypothyroxinemia of prematurity and neurodevelopmental outcome in young adulthood. J Clin Endocrinol Metab. 2015;100(12):4648–53.

    Article  CAS  PubMed  Google Scholar 

  87. Scratch SE, Hunt RW, Thompson DK, Ahmadzai ZM, Doyle LW, Inder TE, et al. Free thyroxine levels after very preterm birth and neurodevelopmental outcomes at age 7 years. Pediatrics. 2014;133(4):e955–63.

    Article  PubMed  PubMed Central  Google Scholar 

  88. van Wassenaer-Leemhuis A, Ares S, Golombek S, Kok J, Paneth N, Kase J, et al. Thyroid hormone supplementation in preterm infants born before 28 weeks gestational age and neurodevelopmental outcome at age 36 months. Thyroid. 2014;24(7):1162–9.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Thalmann S, Meier CA. Effects of drugs on TSH secretion, thyroid hormones absorption, synthesis, metabolism, and action. In: Braverman LE, Cooper DS, editors. Werner & Ingbar’s the thyroid: a fundamental and clinical text. 10th ed. Philadelphia: Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  90. Skelin M, Lucijanic T, Amidzic Klaric D, Resic A, Bakula M, Liberati-Cizmek AM, et al. Factors affecting gastrointestinal absorption of levothyroxine: a review. Clin Ther. 2017;39(2):378–403.

    Article  CAS  PubMed  Google Scholar 

  91. Lafranchi S. Thyroiditis and acquired hypothyroidism. Pediatr Ann. 1992;21(1):29, 32–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ari J. Wassner.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Funding

No sources of funding were used to support the writing of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wassner, A.J. Pediatric Hypothyroidism: Diagnosis and Treatment. Pediatr Drugs 19, 291–301 (2017). https://doi.org/10.1007/s40272-017-0238-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40272-017-0238-0

Navigation