Skip to main content
Log in

Improving Antibody-Based Cancer Therapeutics Through Glycan Engineering

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Antibody-based therapeutics has emerged as a major tool in cancer treatment. Guided by the superb specificity of the antibody variable domain, it allows the precise targeting of tumour markers. Recently, eliciting cellular effector functions, mediated by the Fc domain, has gained traction as a means by which to generate more potent antibody therapeutics. Extensive mutagenesis studies of the Fc protein backbone has enabled the generation of Fc variants that more optimally engage the Fcγ receptors known to mediate cellular effector functions such as antibody-dependent cellular cytotoxicity (ADCC) and cellular phagocytosis. In addition to the protein backbone, the homodimeric Fc domain contains two opposing N-linked glycans, which represent a further point of potential immunomodulation, independent of the Fc protein backbone. For example, a lack of core fucose usually attached to the IgG Fc glycan leads to enhanced ADCC activity, whereas a high level of terminal sialylation is associated with reduced inflammation. Significant growth in knowledge of Fc glycosylation over the last decade, combined with advancement in genetic engineering, has empowered glyco-engineering to fine-tune antibody therapeutics. This has culminated in the approval of two glyco-engineered antibodies for cancer therapy: the anti-CCR4 mogamulizumab approved in 2012 and the anti-CD20 obinutuzumab in 2013. We discuss here the technological platforms for antibody glyco-engineering and review the current clinical landscape of glyco-engineered antibodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Maloney DG, Grillo-Lopez AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N, Foon KA, Liles TM, Dallaire BK, Wey K, Royston I, Davis T, Levy R. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90(6):2188–95.

    CAS  PubMed  Google Scholar 

  2. Casak SJ, Lemery SJ, Shen YL, Rothmann MD, Khandelwal A, Zhao H, Davis G, Jarral V, Keegan P, Pazdur R. U.S. Food and drug administration approval: rituximab in combination with fludarabine and cyclophosphamide for the treatment of patients with chronic lymphocytic leukemia. Oncologist. 2011;16(1):97–104.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Molina A. A decade of rituximab: improving survival outcomes in non-Hodgkin’s lymphoma. Annu Rev Med. 2008;59:237–50.

    Article  CAS  PubMed  Google Scholar 

  4. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87.

    Article  CAS  PubMed  Google Scholar 

  5. Guan M, Zhou YP, Sun JL, Chen SC. Adverse events of monoclonal antibodies used for cancer therapy. Biomed Res Int. 2015;2015:428169.

    PubMed  PubMed Central  Google Scholar 

  6. Reichert JM. Antibodies to watch in 2017. MAbs. 2016;2016:1–15.

    Google Scholar 

  7. Nimmerjahn F, Gordan S, Lux A. FcgammaR dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities. Trends Immunol. 2015;36(6):325–36.

    Article  CAS  PubMed  Google Scholar 

  8. Lee CS, Cragg M, Glennie M, Johnson P. Novel antibodies targeting immune regulatory checkpoints for cancer therapy. Br J Clin Pharmacol. 2013;76(2):233–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Vonderheide RH, Glennie MJ. Agonistic CD40 antibodies and cancer therapy. Clin Cancer Res. 2013;19(5):1035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Berman D, Korman A, Peck R, Feltquate D, Lonberg N, Canetta R. The development of immunomodulatory monoclonal antibodies as a new therapeutic modality for cancer: the Bristol–Myers Squibb experience. Pharmacol Therapeut. 2015;148:132–53.

    Article  CAS  Google Scholar 

  11. Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, Akerley W, van den Eertwegh AJ, Lutzky J, Lorigan P, Vaubel JM, Linette GP, Hogg D, Ottensmeier CH, Lebbe C, Peschel C, Quirt I, Clark JI, Wolchok JD, Weber JS, Tian J, Yellin MJ, Nichol GM, Hoos A, Urba WJ. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat Med. 2000;6(4):443–6.

    Article  CAS  PubMed  Google Scholar 

  13. Uchida J, Hamaguchi Y, Oliver JA, Ravetch JV, Poe JC, Haas KM, Tedder TF. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor-dependent mechanisms during anti-CD20 antibody immunotherapy. J Exp Med. 2004;199(12):1659–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. White AL, Chan HT, Roghanian A, French RR, Mockridge CI, Tutt AL, Dixon SV, Ajona D, Verbeek JS, Al-Shamkhani A, Cragg MS, Beers SA, Glennie MJ. Interaction with FcgammaRIIB is critical for the agonistic activity of anti-CD40 monoclonal antibody. J Immunol. 2011;187(4):1754–63.

    Article  CAS  PubMed  Google Scholar 

  15. White AL, Chan HT, French RR, Willoughby J, Mockridge CI, Roghanian A, Penfold CA, Booth SG, Dodhy A, Polak ME, Potter EA, Ardern-Jones MR, Verbeek JS, Johnson PW, Al-Shamkhani A, Cragg MS, Beers SA, Glennie MJ. Conformation of the human immunoglobulin g2 hinge imparts superagonistic properties to immunostimulatory anticancer antibodies. Cancer Cell. 2015;27(1):138–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mekhaiel DNA, Czajkowsky DM, Andersen JT, Shi J, El-Faham M, Doenhoff M, McIntosh RS, Sandlie I, He J, Hu J, Shao Z, Pleass RJ. Polymeric human Fc-fusion proteins with modified effector functions. Sci Rep. 2011;1:124.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Roghanian A, Teige I, Martensson L, Cox KL, Kovacek M, Ljungars A, Mattson J, Sundberg A, Vaughan AT, Shah V, Smyth NR, Sheth B, Chan HT, Li ZC, Williams EL, Manfredi G, Oldham RJ, Mockridge CI, James SA, Dahal LN, Hussain K, Nilsson B, Verbeek JS, Juliusson G, Hansson M, Jerkeman M, Johnson PW, Davies A, Beers SA, Glennie MJ, Frendeus B, Cragg MS. Antagonistic human FcgammaRIIB (CD32B) antibodies have anti-tumor activity and overcome resistance to antibody therapy in vivo. Cancer Cell. 2015;27(4):473–88.

    Article  CAS  PubMed  Google Scholar 

  18. Li F, Ravetch JV. Inhibitory Fcgamma receptor engagement drives adjuvant and anti-tumor activities of agonistic CD40 antibodies. Science. 2011;333(6045):1030–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lux A, Nimmerjahn F. No need for constant help: human IgG2 antibodies have an autonomous agonistic activity for immunotherapy of cancer. Cancer Cell. 2015;27(1):10–1.

    Article  CAS  PubMed  Google Scholar 

  20. Wilson NS, Yang B, Yang A, Loeser S, Marsters S, Lawrence D, Li Y, Pitti R, Totpal K, Yee S, Ross S, Vernes JM, Lu Y, Adams C, Offringa R, Kelley B, Hymowitz S, Daniel D, Meng G, Ashkenazi A. An Fcgamma receptor-dependent mechanism drives antibody-mediated target-receptor signaling in cancer cells. Cancer Cell. 2011;19(1):101–13.

    Article  CAS  PubMed  Google Scholar 

  21. Anderson CL, Ganesan LP, Robinson JM. The biology of the classical Fcgamma receptors in non-hematopoietic cells. Immunol Rev. 2015;268(1):236–40.

    Article  PubMed  Google Scholar 

  22. Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol. 2008;8(1):34–47.

    Article  CAS  PubMed  Google Scholar 

  23. Unkeless JC, Jin J. Inhibitory receptors, ITIM sequences and phosphatases. Curr Opin Immunol. 1997;9(3):338–43.

    Article  CAS  PubMed  Google Scholar 

  24. Daeron M. Fc receptor biology. Annu Rev Immunol. 1997;15:203–34.

    Article  CAS  PubMed  Google Scholar 

  25. Bruhns P. Properties of mouse and human IgG receptors and their contribution to disease models. Blood. 2012;119(24):5640–9.

    Article  CAS  PubMed  Google Scholar 

  26. Dahal LN, Roghanian A, Beers SA, Cragg MS. Fc gamma R requirements leading to successful immunotherapy. Immunol Rev. 2015;268(1):104–22.

    Article  CAS  PubMed  Google Scholar 

  27. Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP. A novel polymorphism of FcgammaRIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest. 1997;100(5):1059–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–8.

    Article  CAS  PubMed  Google Scholar 

  29. Shields RL, Namenuk AK, Hong K, Meng YG, Rae J, Briggs J, Xie D, Lai J, Stadlen A, Li B, Fox JA, Presta LG. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J Biol Chem. 2001;276(9):6591–604.

    Article  CAS  PubMed  Google Scholar 

  30. Preithner S, Elm S, Lippold S, Locher M, Wolf A, da Silva AJ, Baeuerle PA, Prang NS. High concentrations of therapeutic IgG1 antibodies are needed to compensate for inhibition of antibody-dependent cellular cytotoxicity by excess endogenous immunoglobulin G. Mol Immunol. 2006;43(8):1183–93.

    Article  CAS  PubMed  Google Scholar 

  31. Baruah K, Bowden TA, Krishna BA, Dwek RA, Crispin M, Scanlan CN. Selective deactivation of serum IgG: a general strategy for the enhancement of monoclonal antibody receptor interactions. J Mol Biol. 2012;420(1–2):1–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 2007;25:21–50.

    Article  CAS  PubMed  Google Scholar 

  33. Lund J, Takahashi N, Pound JD, Goodall M, Jefferis R. Multiple interactions of IgG with its core oligosaccharide can modulate recognition by complement and human Fc gamma receptor I and influence the synthesis of its oligosaccharide chains. J Immunol. 1996;157(11):4963–9.

    CAS  PubMed  Google Scholar 

  34. Walker MR, Lund J, Thompson KM, Jefferis R. Aglycosylation of human Igg1 and Igg3 monoclonal-antibodies can eliminate recognition by human-cells expressing Fc-gamma-Ri and or Fc-gamma-Rii receptors. Biochem J. 1989;259(2):347–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jefferis R, Lund J. Glycosylation of antibody molecules: structural and functional significance. Chem Immunol. 1997;65:111–28.

    Article  CAS  PubMed  Google Scholar 

  36. Malhotra R, Wormald MR, Rudd PM, Fischer PB, Dwek RA, Sim RB. Glycosylation changes of IgG associated with rheumatoid arthritis can activate complement via the mannose-binding protein. Nat Med. 1995;1(3):237–43.

    Article  CAS  PubMed  Google Scholar 

  37. Rook GA, Steele J, Brealey R, Whyte A, Isenberg D, Sumar N, Nelson JL, Bodman KB, Young A, Roitt IM, et al. Changes in IgG glycoform levels are associated with remission of arthritis during pregnancy. J Autoimmun. 1991;4(5):779–94.

    Article  CAS  PubMed  Google Scholar 

  38. Alavi A, Arden N, Spector TD, Axford JS. Immunoglobulin G glycosylation and clinical outcome in rheumatoid arthritis during pregnancy. J Rheumatol. 2000;27(6):1379–85.

    CAS  PubMed  Google Scholar 

  39. van de Geijn FE, Wuhrer M, Selman MH, Willemsen SP, de Man YA, Deelder AM, Hazes JM, Dolhain RJ. Immunoglobulin G galactosylation and sialylation are associated with pregnancy-induced improvement of rheumatoid arthritis and the postpartum flare: results from a large prospective cohort study. Arthritis Res Ther. 2009;11(6):R193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW, Harvey DJ, Dugast AS, Heizen EL, Ercan A, Choi I, Streeck H, Nigrovic PA, Bailey-Kellogg C, Scanlan C, Alter G. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J Clin Invest. 2013;123(5):2183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Washburn N, Schwab I, Ortiz D, Bhatnagar N, Lansing JC, Medeiros A, Tyler S, Mekala D, Cochran E, Sarvaiya H, Garofalo K, Meccariello R, Meador JW 3rd, Rutitzky L, Schultes BC, Ling L, Avery W, Nimmerjahn F, Manning AM, Kaundinya GV, Bosques CJ. Controlled tetra-Fc sialylation of IVIg results in a drug candidate with consistent enhanced anti-inflammatory activity. Proc Natl Acad Sci USA. 2015;112(11):E1297–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kaneko Y, Nimmerjahn F, Ravetch JV. Anti-inflammatory activity of immunoglobulin G resulting from Fc sialylation. Science. 2006;313(5787):670–3.

    Article  CAS  PubMed  Google Scholar 

  43. Li T, DiLillo DJ, Bournazos S, Giddens JP, Ravetch JV, Wang LX. Modulating IgG effector function by Fc glycan engineering. Proc Natl Acad Sci USA. 2017;114(13):3485–90.

    Article  CAS  PubMed  Google Scholar 

  44. Shields RL, Lai J, Keck R, O’Connell LY, Hong K, Meng YG, Weikert SH, Presta LG. Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma RIII and antibody-dependent cellular toxicity. J Biol Chem. 2002;277(30):26733–40.

    Article  CAS  PubMed  Google Scholar 

  45. Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, Hanai N, Shitara K. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 2003;278(5):3466–73.

    Article  CAS  PubMed  Google Scholar 

  46. Niwa R, Natsume A, Uehara A, Wakitani M, Iida S, Uchida K, Satoh M, Shitara K. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. J Immunol Methods. 2005;306(1–2):151–60.

    Article  CAS  PubMed  Google Scholar 

  47. Kanda Y, Yamane-Ohnuki N, Sakai N, Yamano K, Nakano R, Inoue M, Misaka H, Iida S, Wakitani M, Konno Y, Yano K, Shitara K, Hosoi S, Satoh M. Comparison of cell lines for stable production of fucose-negative antibodies with enhanced ADCC. Biotechnol Bioeng. 2006;94(4):680–8.

    Article  CAS  PubMed  Google Scholar 

  48. Ferrara C, Grau S, Jäger C, Sondermann P, Brünker P, Waldhauer I, Hennig M, Ruf A, Rufer AC, Stihle M, Umaña P, Benz J. Unique carbohydrate–carbohydrate interactions are required for high affinity binding between FcγRIII and antibodies lacking core fucose. Proc Natl Acad Sci. 2011;108(31):12669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mizushima T, Yagi H, Takemoto E, Shibata-Koyama M, Isoda Y, Iida S, Masuda K, Satoh M, Kato K. Structural basis for improved efficacy of therapeutic antibodies on defucosylation of their Fc glycans. Genes Cells. 2011;16(11):1071–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Giulino LB, Bussel JB, Neufeld EJ, Pediatric and Platelet Immunology Committees of the TMH Clinical Trial Network. Treatment with rituximab in benign and malignant hematologic disorders in children. J Pediatr. 2007;150(4):338–44.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hosono M, Endo K, Sakahara H, Watanabe Y, Saga T, Nakai T, Kawai C, Matsumori A, Yamada T, Watanabe T, Konishi J. Human mouse chimeric antibodies show low reactivity with human antimurine antibodies (Hama). Brit J Cancer. 1992;65(2):197–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sheeley DM, Merrill BM, Taylor LC. Characterization of monoclonal antibody glycosylation: comparison of expression systems and identification of terminal alpha-linked galactose. Anal Biochem. 1997;247(1):102–10.

    Article  CAS  PubMed  Google Scholar 

  53. Qian J, Liu T, Yang L, Daus A, Crowley R, Zhou Q. Structural characterization of N-linked oligosaccharides on monoclonal antibody cetuximab by the combination of orthogonal matrix-assisted laser desorption/ionization hybrid quadrupole-quadrupole time-of-flight tandem mass spectrometry and sequential enzymatic digestion. Anal Biochem. 2007;364(1):8–18.

    Article  CAS  PubMed  Google Scholar 

  54. Galili U, Rachmilewitz EA, Peleg A, Flechner I. A unique natural human IgG antibody with anti-alpha-galactosyl specificity. J Exp Med. 1984;160(5):1519–31.

    Article  CAS  PubMed  Google Scholar 

  55. Chung CH, Mirakhur B, Chan E, Le QT, Berlin J, Morse M, Murphy BA, Satinover SM, Hosen J, Mauro D, Slebos RJ, Zhou Q, Gold D, Hatley T, Hicklin DJ, Platts-Mills TA. Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med. 2008;358(11):1109–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Golay J, Da Roit F, Bologna L, Ferrara C, Leusen JH, Rambaldi A, Klein C, Introna M. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood. 2013;122(20):3482–91.

    Article  CAS  PubMed  Google Scholar 

  57. Herter S, Birk MC, Klein C, Gerdes C, Umana P, Bacac M. Glycoengineering of therapeutic antibodies enhances monocyte/macrophage-mediated phagocytosis and cytotoxicity. J Immunol. 2014;192(5):2252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE. Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol. 1999;17(2):176–80.

    Article  CAS  PubMed  Google Scholar 

  59. Evans JB, Syed BA. From the analyst’s couch: next-generation antibodies. Nat Rev Drug Discov. 2014;13(6):413–4.

    Article  CAS  PubMed  Google Scholar 

  60. Schachter H. Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem Cell Biol. 1986;64(3):163–81.

    Article  CAS  PubMed  Google Scholar 

  61. Ferrara C, Brunker P, Suter T, Moser S, Puntener U, Umana P. Modulation of therapeutic antibody effector functions by glycosylation engineering: influence of Golgi enzyme localization domain and co-expression of heterologous beta1, 4-N-acetylglucosaminyltransferase III and Golgi alpha-mannosidase II. Biotechnol Bioeng. 2006;93(5):851–61.

    Article  CAS  PubMed  Google Scholar 

  62. Zou G, Ochiai H, Huang W, Yang Q, Li C, Wang LX. Chemoenzymatic synthesis and Fcgamma receptor binding of homogeneous glycoforms of antibody Fc domain. Presence of a bisecting sugar moiety enhances the affinity of Fc to FcgammaIIIa receptor. J Am Chem Soc. 2011;133(46):18975–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng. 2004;87(5):614–22.

    Article  CAS  PubMed  Google Scholar 

  64. Matsushita T. Engineered therapeutic antibodies with enhanced effector functions: Clinical application of the Potelligent(R) Technology. Korean J Hematol. 2011;46(3):148–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mori K, Kuni-Kamochi R, Yamane-Ohnuki N, Wakitani M, Yamano K, Imai H, Kanda Y, Niwa R, Iida S, Uchida K, Shitara K, Satoh M. Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA. Biotechnol Bioeng. 2004;88(7):901–8.

    Article  CAS  PubMed  Google Scholar 

  66. Sullivan FX, Kumar R, Kriz R, Stahl M, Xu GY, Rouse J, Chang XJ, Boodhoo A, Potvin B, Cumming DA. Molecular cloning of human GDP-mannose 4,6-dehydratase and reconstitution of GDP-fucose biosynthesis in vitro. J Biol Chem. 1998;273(14):8193–202.

    Article  CAS  PubMed  Google Scholar 

  67. Kanda Y, Imai-Nishiya H, Kuni-Kamochi R, Mori K, Inoue M, Kitajima-Miyama K, Okazaki A, Iida S, Shitara K, Satoh M. Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics. J Biotechnol. 2007;130(3):300–10.

    Article  CAS  PubMed  Google Scholar 

  68. King JD, Poon KK, Webb NA, Anderson EM, McNally DJ, Brisson JR, Messner P, Garavito RM, Lam JS. The structural basis for catalytic function of GMD and RMD, two closely related enzymes from the GDP-d-rhamnose biosynthesis pathway. FEBS J. 2009;276(10):2686–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. von Horsten HH, Ogorek C, Blanchard V, Demmler C, Giese C, Winkler K, Kaup M, Berger M, Jordan I, Sandig V. Production of non-fucosylated antibodies by co-expression of heterologous GDP-6-deoxy-d-lyxo-4-hexulose reductase. Glycobiology. 2010;20(12):1607–18.

    Article  CAS  Google Scholar 

  70. Crispin M, Harvey DJ, Chang VT, Yu C, Aricescu AR, Jones EY, Davis SJ, Dwek RA, Rudd PM. Inhibition of hybrid- and complex-type glycosylation reveals the presence of the GlcNAc transferase I-independent fucosylation pathway. Glycobiology. 2006;16(8):748–56.

    Article  CAS  PubMed  Google Scholar 

  71. Reeves PJ, Callewaert N, Contreras R, Khorana HG. Structure and function in rhodopsin: high-level expression of rhodopsin with restricted and homogeneous N-glycosylation by a tetracycline-inducible N-acetylglucosaminyltransferase I-negative HEK293S stable mammalian cell line. Proc Natl Acad Sci USA. 2002;99(21):13419–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Yu X, Baruah K, Harvey DJ, Vasiljevic S, Alonzi DS, Song BD, Higgins MK, Bowden TA, Scanlan CN, Crispin M. Engineering hydrophobic protein-carbohydrate interactions to fine-tune monoclonal antibodies. J Am Chem Soc. 2013;135(26):9723–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu X, Vasiljevic S, Mitchell DA, Crispin M, Scanlan CN. Dissecting the molecular mechanism of IVIg therapy: the interaction between serum IgG and DC-SIGN is independent of antibody glycoform or Fc domain. J Mol Biol. 2013;425(8):1253–8.

    Article  CAS  PubMed  Google Scholar 

  74. Kanda Y, Yamada T, Mori K, Okazaki A, Inoue M, Kitajima-Miyama K, Kuni-Kamochi R, Nakano R, Yano K, Kakita S, Shitara K, Satoh M. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types. Glycobiology. 2007;17(1):104–18.

    Article  CAS  PubMed  Google Scholar 

  75. Goetze AM, Liu YD, Zhang Z, Shah B, Lee E, Bondarenko PV, Flynn GC. High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology. 2011;21(7):949–59.

    Article  CAS  PubMed  Google Scholar 

  76. Millward TA, Heitzmann M, Bill K, Langle U, Schumacher P, Forrer K. Effect of constant and variable domain glycosylation on pharmacokinetics of therapeutic antibodies in mice. Biologicals. 2008;36(1):41–7.

    Article  CAS  PubMed  Google Scholar 

  77. Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B, Ballew N, Bobrowicz P, Choi BK, Cook WJ, Cukan M, Houston-Cummings NR, Davidson R, Gong B, Hamilton SR, Hoopes JP, Jiang Y, Kim N, Mansfield R, Nett JH, Rios S, Strawbridge R, Wildt S, Gerngross TU. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol. 2006;24(2):210–5.

    Article  CAS  PubMed  Google Scholar 

  78. Calow J, Behrens AJ, Mader S, Bockau U, Struwe WB, Harvey DJ, Cormann KU, Nowaczyk MM, Loser K, Schinor D, Hartmann MWW, Crispin M. Antibody production using a ciliate generates unusual antibody glycoforms displaying enhanced cell-killing activity. Mabs. 2016;8(8):1498–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cox KM, Sterling JD, Regan JT, Gasdaska JR, Frantz KK, Peele CG, Black A, Passmore D, Moldovan-Loomis C, Srinivasan M, Cuison S, Cardarelli PM, Dickey LF. Glycan optimization of a human monoclonal antibody in the aquatic plant Lemna minor. Nat Biotechnol. 2006;24(12):1591–7.

    Article  CAS  PubMed  Google Scholar 

  80. Elbein AD, Tropea JE, Mitchell M, Kaushal GP. Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem. 1990;265(26):15599–605.

    CAS  PubMed  Google Scholar 

  81. Bowden TA, Baruah K, Coles CH, Harvey DJ, Yu X, Song BD, Stuart DI, Aricescu AR, Scanlan CN, Jones EY, Crispin M. Chemical and structural analysis of an antibody folding intermediate trapped during glycan biosynthesis. J Am Chem Soc. 2012;134(42):17554–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Okeley NM, Alley SC, Anderson ME, Boursalian TE, Burke PJ, Emmerton KM, Jeffrey SC, Klussman K, Law CL, Sussman D, Toki BE, Westendorf L, Zeng W, Zhang X, Benjamin DR, Senter PD. Development of orally active inhibitors of protein and cellular fucosylation. Proc Natl Acad Sci USA. 2013;110(14):5404–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Huang W, Giddens J, Fan SQ, Toonstra C, Wang LX. Chemoenzymatic glycoengineering of intact IgG antibodies for gain of functions. J Am Chem Soc. 2012;134(29):12308–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Ahmed AA, Giddens J, Pincetic A, Lomino JV, Ravetch JV, Wang LX, Bjorkman PJ. Structural characterization of anti-inflammatory immunoglobulin G Fc proteins. J Mol Biol. 2014;426(18):3166–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Parsons TB, Struwe WB, Gault J, Yamamoto K, Taylor TA, Raj R, Wals K, Mohammed S, Robinson CV, Benesch JL, Davis BG. Optimal synthetic glycosylation of a therapeutic antibody. Angew Chem Int Ed Engl. 2016;55(7):2361–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Duvic M, Evans M, Wang C. Mogamulizumab for the treatment of cutaneous T-cell lymphoma: recent advances and clinical potential. Ther Adv Hematol. 2016;7(3):171–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, Chagorova T, de la Serna J, Dilhuydy MS, Illmer T, Opat S, Owen CJ, Samoylova O, Kreuzer KA, Stilgenbauer S, Dohner H, Langerak AW, Ritgen M, Kneba M, Asikanius E, Humphrey K, Wenger M, Hallek M. Obinutuzumab plus chlorambucil in patients with CLL and coexisting conditions. N Engl J Med. 2014;370(12):1101–10.

    Article  CAS  PubMed  Google Scholar 

  88. Yver A, Homery MC, Fuseau E, Guemas E, Dhainaut F, Quagliaroli D, Beliard R, Prost JF. Pharmacokinetics and safety of roledumab, a novel human recombinant monoclonal anti-RhD antibody with an optimized Fc for improved engagement of FCgammaRIII, in healthy volunteers. Vox Sang. 2012;103(3):213–22.

    Article  CAS  PubMed  Google Scholar 

  89. Subramaniam JM, Whiteside G, McKeage K, Croxtall JC. Mogamulizumab: first global approval. Drugs. 2012;72(9):1293–8.

    Article  CAS  PubMed  Google Scholar 

  90. Yoshie O, Matsushima K. CCR4 and its ligands: from bench to bedside. Int Immunol. 2015;27(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  91. Ishii T, Ishida T, Utsunomiya A, Inagaki A, Yano H, Komatsu H, Iida S, Imada K, Uchiyama T, Akinaga S, Shitara K, Ueda R. Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukemia/lymphoma. Clin Cancer Res. 2010;16(5):1520–31.

    Article  CAS  PubMed  Google Scholar 

  92. Duvic M, Pinter-Brown LC, Foss FM, Sokol L, Jorgensen JL, Challagundla P, Dwyer KM, Zhang X, Kurman MR, Ballerini R, Liu L, Kim YH. Phase 1/2 study of mogamulizumab, a defucosylated anti-CCR4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood. 2015;125(12):1883–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Oldham RK, Dillman RO. Monoclonal antibodies in cancer therapy: 25 years of progress. J Clin Oncol. 2008;26(11):1774–7.

    Article  PubMed  Google Scholar 

  94. Oldham RJ, Cleary KLS, Cragg MS. CD20 and its antibodies: past, present, and future. Forum Immunopathol Dis Ther. 2014;5(1–2):7–23.

    Article  Google Scholar 

  95. Sehn LH, Chua N, Mayer J, Dueck G, Trneny M, Bouabdallah K, Fowler N, Delwail V, Press O, Salles G, Gribben J, Lennard A, Lugtenburg PJ, Dimier N, Wassner-Fritsch E, Fingerle-Rowson G, Cheson BD. Obinutuzumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. Lancet Oncol. 2016;17(8):1081–93.

    Article  CAS  PubMed  Google Scholar 

  96. Cameron F, McCormack PL. Obinutuzumab: first global approval. Drugs. 2014;74(1):147–54.

    Article  CAS  PubMed  Google Scholar 

  97. Mossner E, Brunker P, Moser S, Puntener U, Schmidt C, Herter S, Grau R, Gerdes C, Nopora A, van Puijenbroek E, Ferrara C, Sondermann P, Jager C, Strein P, Fertig G, Friess T, Schull C, Bauer S, Dal Porto J, Del Nagro C, Dabbagh K, Dyer MJ, Poppema S, Klein C, Umana P. Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood. 2010;115(22):4393–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Herter S, Herting F, Mundigl O, Waldhauer I, Weinzierl T, Fauti T, Muth G, Ziegler-Landesberger D, Van Puijenbroek E, Lang S, Duong MN, Reslan L, Gerdes CA, Friess T, Baer U, Burtscher H, Weidner M, Dumontet C, Umana P, Niederfellner G, Bacac M, Klein C. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. Mol Cancer Ther. 2013;12(10):2031–42.

    Article  CAS  PubMed  Google Scholar 

  99. Bournazos S, Woof JM, Hart SP, Dransfield I. Functional and clinical consequences of Fc receptor polymorphic and copy number variants. Clin Exp Immunol. 2009;157(2):244–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Goede V, Fischer K, Humphrey K, Asikanius E, Busch R, Engelke A, Wendtner CM, Samoylova O, Chagorova T, Dilhuydy MS, Torroba JD, Illmer T, Opat S, Owen C, Kreuzer KA, Langerak AW, Ritgen M, Stilgenbauer S, Wenger M, Hallek M. Obinutuzumab (GA101) plus chlorambucil (Clb) or rituximab (R) plus Clb versus Clb alone in patients with chronic lymphocytic leukemia (CLL) and preexisting medical conditions (comorbidities): final stage 1 results of the CLL11 (BO21004) phase III trial. J Clin Oncol. 2013;31:15.

    Google Scholar 

  101. Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, Chagorova T, De la Serna J, Dilhuydy MS, Opat S, Owen CJ, Samoylova O, Kreuzer KA, Langerak AW, Ritgen M, Stilgenbauer S, Dohner H, Asikanius E, Humphrey K, Wenger MK, Hallek M. Head-to-head comparison of obinutuzumab (GA101) plus chlorambucil (Clb) versus rituximab plus Clb in patients with chronic lymphocytic leukemia (CLL) and co-existing medical conditions (comorbidities): final stage 2 results of the CLL11 trial. Blood. 2013;122:21.

    Google Scholar 

  102. Klein C, Lammens A, Schafer W, Georges G, Schwaiger M, Mossner E, Hopfner KP, Umana P, Niederfellner G. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. MAbs. 2013;5(1):22–33.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Deans JP, Robbins SM, Polyak MJ, Savage JA. Rapid redistribution of CD20 to a low density detergent-insoluble membrane compartment. J Biol Chem. 1998;273(1):344–8.

    Article  CAS  PubMed  Google Scholar 

  104. Cragg MS, Morgan SM, Chan HT, Morgan BP, Filatov AV, Johnson PW, French RR, Glennie MJ. Complement-mediated lysis by anti-CD20 mAb correlates with segregation into lipid rafts. Blood. 2003;101(3):1045–52.

    Article  CAS  PubMed  Google Scholar 

  105. Tipton TR, Roghanian A, Oldham RJ, Carter MJ, Cox KL, Mockridge CI, French RR, Dahal LN, Duriez PJ, Hargreaves PG, Cragg MS, Beers SA. Antigenic modulation limits the effector cell mechanisms employed by type I anti-CD20 monoclonal antibodies. Blood. 2015;125(12):1901–9.

    Article  CAS  PubMed  Google Scholar 

  106. Arteaga CL, Sliwkowski MX, Osborne CK, Perez EA, Puglisi F, Gianni L. Treatment of HER2-positive breast cancer: current status and future perspectives. Nat Rev Clin Oncol. 2011;9(1):16–32.

    Article  PubMed  CAS  Google Scholar 

  107. Junttila TT, Akita RW, Parsons K, Fields C, Phillips GDL, Friedman LS, Sampath D, Sliwkowski MX. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell. 2009;15(5):429–40.

    Article  CAS  PubMed  Google Scholar 

  108. Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL. Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res. 2002;62(14):4132–41.

    CAS  PubMed  Google Scholar 

  109. Listinsky JJ, Siegal GP, Listinsky CM. Glycoengineering in cancer therapeutics: a review with fucose-depleted trastuzumab as the model. Anticancer Drugs. 2013;24(3):219–27.

    Article  CAS  PubMed  Google Scholar 

  110. Musolino A, Naldi N, Bortesi B, Pezzuolo D, Capelletti M, Missale G, Laccabue D, Zerbini A, Camisa R, Bisagni G, Neri TM, Ardizzoni A. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol. 2008;26(11):1789–96.

    Article  CAS  PubMed  Google Scholar 

  111. Junttila TT, Parsons K, Olsson C, Lu Y, Xin Y, Theriault J, Crocker L, Pabonan O, Baginski T, Meng G, Totpal K, Kelley RF, Sliwkowski MX. Superior in vivo efficacy of afucosylated trastuzumab in the treatment of HER2-amplified breast cancer. Cancer Res. 2010;70(11):4481–9.

    Article  CAS  PubMed  Google Scholar 

  112. Amado RG, Wolf M, Peeters M, Van Cutsem E, Siena S, Freeman DJ, Juan T, Sikorski R, Suggs S, Radinsky R, Patterson SD, Chang DD. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol. 2008;26(10):1626–34.

    Article  CAS  PubMed  Google Scholar 

  113. Lievre A, Bachet JB, Le Corre D, Boige V, Landi B, Emile JF, Cote JF, Tomasic G, Penna C, Ducreux M, Rougier P, Penault-Llorca F, Laurent-Puig P. KRAS mutation status is predictive of response to cetuximab therapy in colorectal cancer. Cancer Res. 2006;66(8):3992–5.

    Article  CAS  PubMed  Google Scholar 

  114. Goldstein NI, Prewett M, Zuklys K, Rockwell P, Mendelsohn J. Biological efficacy of a chimeric antibody to the epidermal growth factor receptor in a human tumor xenograft model. Clin Cancer Res. 1995;1(11):1311–8.

    CAS  PubMed  Google Scholar 

  115. Gerdes CA, Nicolini VG, Herter S, van Puijenbroek E, Lang S, Roemmele M, Moessner E, Freytag O, Friess T, Ries CH, Bossenmaier B, Mueller HJ, Umana P. GA201 (RG7160): a novel, humanized, glycoengineered anti-EGFR antibody with enhanced ADCC and superior in vivo efficacy compared with cetuximab. Clin Cancer Res. 2013;19(5):1126–38.

    Article  CAS  PubMed  Google Scholar 

  116. Paz-Ares LG, Gomez-Roca C, Delord JP, Cervantes A, Markman B, Corral J, Soria JC, Berge Y, Roda D, Russell-Yarde F, Hollingsworth S, Baselga J, Umana P, Manenti L, Tabernero J. Phase I pharmacokinetic and pharmacodynamic dose-escalation study of RG7160 (GA201), the first glycoengineered monoclonal antibody against the epidermal growth factor receptor, in patients with advanced solid tumors. J Clin Oncol. 2011;29(28):3783–90.

    Article  CAS  PubMed  Google Scholar 

  117. Poliakov A, Cotrina M, Wilkinson DG. Diverse roles of eph receptors and ephrins in the regulation of cell migration and tissue assembly. Dev Cell. 2004;7(4):465–80.

    Article  CAS  PubMed  Google Scholar 

  118. Swords RT, Greenberg PL, Wei AH, Durrant S, Advani AS, Hertzberg MS, Lewis ID, Rivera G, Gratzinger D, Fan AC, Felsher DW, Cortes JE, Watts JM, Yarranton GT, Walling JM, Lancet JE. KB004, a first in class monoclonal antibody targeting the receptor tyrosine kinase EphA3, in patients with advanced hematologic malignancies: results from a phase 1 study. Leuk Res. 2016;50:123–31.

    Article  CAS  PubMed  Google Scholar 

  119. Swords RT, Wei AH, Durrant S, Advani AS, Hertzberg MS, Lewis ID, Greenberg PL, Cortes JE, Yarranton GT, Walling JM, Lancet JE. KB004, a novel non-fucosylated humaneered (R) antibody, targeting EphA3, is active and well tolerated in a phase I/II study of advanced hematologic malignancies. Blood. 2014;124:21.

    Article  Google Scholar 

  120. Naddafi F, Davami F. Anti-CD19 monoclonal antibodies: a new approach to lymphoma therapy. Int J Mol Cell Med. 2015;4(3):143–51.

    PubMed  PubMed Central  Google Scholar 

  121. Vlasveld LT, Hekman A, Vythdreese FA, Melief CJM, Sein JJ, Voordouw AC, Dellemijn TAM, Rankin EM. Treatment of low-grade non-Hodgkins-lymphoma with continuous-infusion of low-dose recombinant interleukin-2 in combination with the B-cell-specific monoclonal-antibody Clb-Cd19. Cancer Immunol Immun. 1995;40(1):37–47.

    CAS  Google Scholar 

  122. Hekman A, Honselaar A, Vuist WM, Sein JJ, Rodenhuis S, ten Bokkel Huinink WW, Somers R, Rumke P, Melief CJ. Initial experience with treatment of human B cell lymphoma with anti-CD19 monoclonal antibody. Cancer Immunol Immunother. 1991;32(6):364–72.

    Article  CAS  PubMed  Google Scholar 

  123. Cardarelli PM, Rao-Naik C, Chen S, Huang H, Pham A, Moldovan-Loomis MC, Pan C, Preston B, Passmore D, Liu J, Kuhne MR, Witte A, Blanset D, King DJ. A nonfucosylated human antibody to CD19 with potent B-cell depletive activity for therapy of B-cell malignancies. Cancer Immunol Immunother. 2010;59(2):257–65.

    Article  CAS  PubMed  Google Scholar 

  124. Herbst R, Wang Y, Gallagher S, Mittereder N, Kuta E, Damschroder M, Woods R, Rowe DC, Cheng L, Cook K, Evans K, Sims GP, Pfarr DS, Bowen MA, Dall’Acqua W, Shlomchik M, Tedder TF, Kiener P, Jallal B, Wu H, Coyle AJ. B-cell depletion in vitro and in vivo with an afucosylated anti-CD19 antibody. J Pharmacol Exp Ther. 2010;335(1):213–22.

    Article  CAS  PubMed  Google Scholar 

  125. Camacho LH, Joyce R, Brown JR, Chanan-Khan A, Amrein PC, Assad A, Carrigan M. A phase 1, open-label, multi-center, multiple-dose, dose-escalation study of MDX-1342 in patients with CD19-positive refractory/relapsed chronic lymphocytic leukemia. Blood. 2009;114(22):1330.

    Google Scholar 

  126. Hammer O. CD19 as an attractive target for antibody-based therapy. Mabs. 2012;4(5):571–7.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Ward E, Mittereder N, Kuta E, Sims GP, Bowen MA, Dall’Acqua W, Tedder T, Kiener P, Coyle AJ, Wu H, Jallal B, Herbst R. A glycoengineered anti-CD19 antibody with potent antibody-dependent cellular cytotoxicity activity in vitro and lymphoma growth inhibition in vivo. Br J Haematol. 2011;155(4):426–37.

    Article  CAS  PubMed  Google Scholar 

  128. Hamadani M, Forero A, Kipps TJ, Fanale MA, Cuneo A, de Oteyza JP, Gladstone D, Goswami T, Ibrahim RA, Liang MN, Eck S, Elgeioushi N, Herbst R, Cheson BD. MEDI-551, an anti-CD19 antibody active in chronic lymphocytic leukemia (CLL) patients previously treated with rituximab. J Clin Oncol. 2013;31:15.

    Article  CAS  Google Scholar 

  129. Goswami T, Forero A, Hamadani M, Sonet A, Verhoef G, Fanale MA, Bello CM, Huang WM, Cheson BD. Phase I/II study of MEDI-551, a humanized monoclonal antibody targeting CD19, in subjects with relapsed or refractory advanced B-cell malignancies. J Clin Oncol. 2012;30:15.

    Google Scholar 

  130. Senter PD, Sievers EL. The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma. Nat Biotechnol. 2012;30(7):631–7.

    Article  CAS  PubMed  Google Scholar 

  131. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL, Forero-Torres A. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med. 2010;363(19):1812–21.

    Article  CAS  PubMed  Google Scholar 

  132. Ansell SM, Horwitz SM, Engert A, Khan KD, Lin T, Strair R, Keler T, Graziano R, Blanset D, Yellin M, Fischkoff S, Assad A, Borchmann P. Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin’s lymphoma and anaplastic large-cell lymphoma. J Clin Oncol. 2007;25(19):2764–9.

    Article  CAS  PubMed  Google Scholar 

  133. Cardarelli PM, Moldovan-Loomis MC, Preston B, Black A, Passmore D, Chen TH, Chen S, Liu J, Kuhne MR, Srinivasan M, Assad A, Witte A, Graziano RF, King DJ. In vitro and in vivo characterization of MDX-1401 for therapy of malignant lymphoma. Clin Cancer Res. 2009;15(10):3376–83.

    Article  CAS  PubMed  Google Scholar 

  134. Thertulien R, Frankel A, Evens A, Kaufman J, Horwitz S, Assad A, Cardarelli P, Tian J, Zhang ZS, MacDowall M. A phase I, open-label, dose-escalation, multidose study of MDX-1401 (defucosylated human antiCD30 monoclonal antibody) in patients with CD30-positive refractory/relapsed Hodgkin’s lymphoma. Cancer Res. 2009;69.

  135. Watanabe M, Yamashita K, Suzuki T, Kamachi H, Kuraya D, Koshizuka Y, Ogura M, Yoshida T, Aoyagi T, Fukumori D, Shimamura T, Okimura K, Maeta K, Miura T, Sakai F, Todo S. ASKP1240, a fully human anti-CD40 monoclonal antibody, prolongs pancreatic islet allograft survival in nonhuman primates. Am J Transplant. 2013;13(8):1976–88.

    Article  CAS  PubMed  Google Scholar 

  136. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–72.

    Article  CAS  PubMed  Google Scholar 

  137. Gardai SJ, Epp A, Linares G, Westendorf L, Sutherland MK, Neff-LaFord H, Drachman JG, Peng S, Law CL. A sugar engineered non-fucosylated anti-CD40 antibody, SEA-CD40, with enhanced immune stimulatory activity alone and in combination with immune checkpoint inhibitors. J Clin Oncol. 2015;33:15.

    Google Scholar 

  138. Gardai SJ, Epp A, Linares G, Westendorf L, Sutherland M, Neff-LaFord H, Peng SL, Law CL. SEA-CD40, a sugar engineered non-fucosylated anti-CD40 antibody with improved immune activating capabilities. Cancer Res. 2015;75.

  139. de Vos S, Forero-Torres A, Ansell SM, Kahl B, Cheson BD, Bartlett NL, Furman RR, Winter JN, Kaplan H, Timmerman J, Whiting NC, Drachman JG, Advani R. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J Hematol Oncol. 2014;7:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Furman RR, Forero-Torres A, Shustov A, Drachman JG. A phase I study of dacetuzumab (SGN-40, a humanized anti-CD40 monoclonal antibody) in patients with chronic lymphocytic leukemia. Leuk Lymphoma. 2010;51(2):228–35.

    Article  CAS  PubMed  Google Scholar 

  141. Law CL, Gordon KA, Collier J, Klussman K, McEarchern JA, Cerveny CG, Mixan BJ, Lee WP, Lin Z, Valdez P, Wahl AF, Grewal IS. Preclinical antilymphoma activity of a humanized anti-CD40 monoclonal antibody, SGN-40. Cancer Res. 2005;65(18):8331–8.

    Article  CAS  PubMed  Google Scholar 

  142. Laabi Y, Gras MP, Brouet JC, Berger R, Larsen CJ, Tsapis A. The BCMA gene, preferentially expressed during B-lymphoid maturation, is bidirectionally transcribed. Nucleic Acids Res. 1994;22(7):1147–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Laabi Y, Gras MP, Carbonnel F, Brouet JC, Berger R, Larsen CJ, Tsapis A. A new gene, BCM, on chromosome-16 is fused to the interleukin-2 gene by a T(4–16)(Q26-P13) translocation in a malignant T-cell lymphoma. EMBO J. 1992;11(11):3897–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. MacLennan I, Vinuesa C. Dendritic cells, BAFF, and APRIL: innate players in adaptive antibody responses. Immunity. 2002;17(3):235–8.

    Article  CAS  PubMed  Google Scholar 

  145. O’Connor BP, Raman VS, Erickson LD, Cook WJ, Weaver LK, Ahonen C, Lin LL, Mantchev GT, Bram RJ, Noelle RJ. BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med. 2004;199(1):91–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Carpenter RO, Evbuomwan MO, Pittaluga S, Rose JJ, Raffeld M, Yang SC, Gress RE, Hakim FT, Kochenderfer JN. B-cell maturation antigen is a promising target for adoptive T-cell therapy of multiple myeloma. Clin Cancer Res. 2013;19(8):2048–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Tai YT, Mayes PA, Acharya C, Zhong MY, Cea M, Cagnetta A, Craigen J, Yates J, Gliddon L, Fieles W, Hoang B, Tunstead J, Christie AL, Kung AL, Richardson P, Munshi NC, Anderson KC. Novel anti-B-cell maturation antigen antibody–drug conjugate (GSK2857916) selectively induces killing of multiple myeloma. Blood. 2014;123(20):3128–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. van Geel R, Wijdeven MA, Heesbeen R, Verkade JMM, Wasiel AA, van Berkel SS, van Delft FL. Chemoenzymatic conjugation of toxic payloads to the globally conserved N-glycan of native mabs provides homogeneous and highly efficacious antibody–drug conjugates. Bioconjugate Chem. 2015;26(11):2233–42.

    Article  CAS  Google Scholar 

  149. Qasba PK. Glycans of antibodies as a specific site for drug conjugation using glycosyltransferases. Bioconjugate Chem. 2015;26(11):2170–5.

    Article  CAS  Google Scholar 

  150. Li X, Fang T, Boons GJ. Preparation of well-defined antibody–drug conjugates through glycan remodeling and strain-promoted azide-alkyne cycloadditions. Angew Chem Int Ed Engl. 2014;53(28):7179–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Zhou Q, Stefano JE, Manning C, Kyazike J, Chen B, Gianolio DA, Park A, Busch M, Bird J, Zheng XY, Simonds-Mannes H, Kim J, Gregory RC, Miller RJ, Brondyk WH, Dhal PK, Pan CQ. Site-specific antibody–drug conjugation through glycoengineering. Bioconjugate Chem. 2014;25(3):510–20.

    Article  CAS  Google Scholar 

  152. Zuberbuhler K, Casi G, Bernardes GJ, Neri D. Fucose-specific conjugation of hydrazide derivatives to a vascular-targeting monoclonal antibody in IgG format. Chem Commun (Camb). 2012;48(56):7100–2.

    Article  CAS  Google Scholar 

  153. Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody–drug conjugates. Nat Rev Drug Discov. 2017;16(5):315–37.

    Article  CAS  PubMed  Google Scholar 

  154. Largy E, Cantais F, Van Vyncht G, Beck A, Delobel A. Orthogonal liquid chromatography-mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A. 2017;1498:128–46.

    Article  CAS  PubMed  Google Scholar 

  155. Ishida T, Joh T, Uike N, Yamamoto K, Utsunomiya A, Yoshida S, Saburi Y, Miyamoto T, Takemoto S, Suzushima H, Tsukasaki K, Nosaka K, Fujiwara H, Ishitsuka K, Inagaki H, Ogura M, Akinaga S, Tomonaga M, Tobinai K, Ueda R. Defucosylated anti-CCR4 monoclonal antibody (KW-0761) for relapsed adult T-cell leukemia-lymphoma: a multicenter phase II study. J Clin Oncol. 2012;30(8):837–42.

    Article  CAS  PubMed  Google Scholar 

  156. Duvic M, Pinter-Brown L, Foss FM, Sokol L, Jorgensen J, Spitalny GL, Kim YH. Results of a phase 1/2 study for KW-0761, a monoclonal antibody directed against CC chemokine receptor type 4 (CCR4), in CTCL patients. Blood. 2010;116(21):424.

    Google Scholar 

  157. Gladstone D, Andre M, Jan ZC, Assouline S, Bellam N, Cascavilla N, Jourdan E, Panwalkar A, Patti C, Schulte C, Zaja F, Goswami T, Elgeioushi N, Streicher K, Bao HF, Spaner D. Results of a phase 2 study of MEDI-551 and bendamustine vs rituximab and bendamustine in relapsed or refractory chronic lymphocytic leukemia. Blood. 2014;124:21.

    Article  Google Scholar 

  158. Forero-Torres A, Hamadani M, Fanale MA, Bello CM, Kipps TJ, Offner F, Verhoef G, Federico M, Gregory SA, Sonet A, Assouline S, de Oteyza JP, Tomas JF, Cuneo A, Elgeioushi N, Goswami T, Ibrahim R, Herbst R, Cheson BD. Safety profile and clinical response to MEDI-551, a humanized monoclonal anti-CD19, in a phase 1/2 study in adults with relapsed or refractory advanced B-cell malignancies. Blood. 2013;122:21.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojie Yu or Max Crispin.

Ethics declarations

Conflicts of interest

MC is supported by a research grant from Against Breast Cancer (http://www.againstbreastcancer.org; UK charity number 1121258) and is the Against Breast Cancer Fellow at Oriel College, Oxford, UK. MC was founder and director of Immago Biosystems which was acquired by Hansa Medical. MM is supported by a BBSRC iCASE studentship in partnership with Roche. MSC acts as a consultant for Bioinvent International and has previously received research grant support from Roche, UCB and Promega, and has received honorarium from Baxalta. XY declares no conflicts of interest. No additional funding was received for the preparation of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, X., Marshall, M.J.E., Cragg, M.S. et al. Improving Antibody-Based Cancer Therapeutics Through Glycan Engineering. BioDrugs 31, 151–166 (2017). https://doi.org/10.1007/s40259-017-0223-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-017-0223-8

Keywords

Navigation