Skip to main content

Advertisement

Log in

Companion and Smart Plants: Scientific Background to Promote Conservation Biological Control

  • Review
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

To attain sustainable agricultural crop protection, tools such as host plant resistance, enhanced ecosystem services (i.e. conserving natural enemies) and the deployment of companion plants should be promoted in pest management programmes. These agro system manipulations could be based on chemical ecology studies considering the interactions with natural enemies and pests, regarding specifically plant defence signalling. Further, new crop protection strategies might rise from widening the knowledge regarding how herbivore-induced plant volatiles can govern a multifaceted defence response including natural enemy recruitment, pest repellence or induced defence in neighbouring plants. It is crucial to use a multitrophic approach to understand better the interactions involving companion plants, herbivores and natural enemies in the field, increasing the knowledge to build more efficient and sustainable pest management strategies. In this review, we explore the perspectives of companion plants and their semiochemicals to promote conservation biological control according to the ‘smart plants’ concept. Further, we discuss the advantages and disadvantages of using companion plants and explore the application of companion plants in different agroecosystems using several case studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Almeida NO, Teixeira RA, Carneiro FA, Oliveira CM, Ribeiro VA, Lobo Júnior M, Rocha MR (2018) Occurrence and correlations of nematodes, Fusarium oxysporum and edaphic factors on banana plantations. J Phytopathol 166:265–272

    CAS  Google Scholar 

  • Amaral DSSL, Venzon M, dos Santos HH, Sujii ER, Schmidt JM, Harwood JD (2016) Non-crop plant communities conserve spider populations in chili pepper agroecosystems. Biol Control 103:69–77

    Google Scholar 

  • Amaral DSSL, Venzon M, Pallini A, Lima P, DeSouza O (2010) A Diversificação da vegetação reduz o ataque do bicho-mineiro-do-cafeeiro Leucoptera coffeella (Guérin-Mèneville) (Lepidoptera: Lyonetiidae)? Neotrop Entomol 39:543–548

    PubMed  Google Scholar 

  • Andow DA (1991) Vegetational diversiy and arthropod population response. Ann Rev Entomol 36:561–586

    Google Scholar 

  • Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messéan A, Moonen AC, Ratnadass A, Ricci P, Sarah JL, Sattin M (2015) Eight principles of integrated pest management. Agron Sust Dev 35:1199–1215

    Google Scholar 

  • Begg GS, Cook SM, Dye R, Ferrante M, Franck P, Lavigne C, Lövei GL, Mansion-Vaquie A, Pell JK, Petit S, Quesada N (2017) A functional overview of conservation biological control. Crop Prot 97:145–158

    Google Scholar 

  • Bernardi D, Salmeron E, Horikoshi RJ, Bernardi O, Dourado PM, Carvalho RA et al (2015) Cross-resistance between Cry1 proteins in fall armyworm (Spodoptera frugiperda) may affect the durability of current pyramided Bt maize hydrids in Brazil. PLoS ONE 10:e0140130. https://doi.org/10.1371/journal.pone.0140130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernays EA (2001) Neural limitation in phytophagous insects: implications for diet breadth and evolution of host affiliation. Ann Rev Entomol 46:703–727

    CAS  Google Scholar 

  • Bernays EA, Chapman RF (2007) Host-plant selection by phytophagous insects. Contemporary topics in entomology 2. Chapman & Hall, New York, NY. 326 pp

  • Bernays EA, Minkenberg OPJM (1997) Insect herbivores: different reasons for being a generalist. Ecology 78:1157–1169

    Google Scholar 

  • Biondi A, Zappalà L, Di Mauro A, Garzia GT, Russo A, Desneux N, Siscaro G (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? Biocontrol 61:79–90

    Google Scholar 

  • Birkett MA, Pickett JA (2014) Prospects of genetic engineering for robust insect resistance. Curr Opin Plant Biol 19:59–67. https://doi.org/10.1016/j.pbi.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  • Blassioli-Moraes MC, Laumann RA, Pires CSS, Borges M (2005) Induced volatiles in soybean and pigeon pea plants artificially infested with the Neotropical brown stink bug, Euschistus heros, and their effect on the egg parasitoid, Telenomus podisi. Entomol Exp Appl 115:227–237

    Google Scholar 

  • Blassioli-Moraes MCB, Pareja M, Laumann RA, Hoffmann-Campos CB, Borges M (2008) Response of the parasitoid Telenomus podisi to induced volatiles from soybean damaged by stink bug herbivory and oviposition. J Plant Int 5:1–13

    Google Scholar 

  • Borges, M , Blassioli-Moraes, MC (2017) The Semiochemistry of Pentatomidae. In: Miguel Borges and Andrej Colk. (Org.). Stinkbugs: Biorational Control Based on Communication Processes. 1st ed.Londres: CRC press, 2016, 1: 20–50

  • Borges M, Medeiros MA, Mori K, Zarbin PHG, Ferreira JTB (1998) Field Responses of stink bugs to the natural and synthetic pheromone of the Neotropical brown stink bug, Euschistus heros (Heteroptera: Pentatomidae). Phys Entomol 23:202–207

    CAS  Google Scholar 

  • Botti JMC, Martins EF, Franzin ML, Venzon M (2021) Predation of coffee berry borer by a green lacewing. Neotrop Entomol. https://doi.org/10.1007/s13744-021-00884-0

    Article  PubMed  Google Scholar 

  • Brennan EB (2016) Agronomic aspects of strip intercropping broccoli with alyssum for biological control of aphids. Biol Control 97:109–119

    Google Scholar 

  • Bruce TJA, Aradottir GI, Smart LE, Martin JL, Caulfield JC, Doherty A, Sparks CA, Woodcock CM, Birkett MA, Napier JA, Jones HD, Pickett JA (2015) The first crop plant genetically engineered to release an insect pheromone for defence. Sci Rep 5:11183. https://doi.org/10.1038/srep11183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bundy CS, McPherson RM (2000) Dynamics and seasonal abundance of stink bugs (Heteroptera: Pentatomidae) in a cotton–soybean ecosystem. J Econ Entomol 93:697–706

    CAS  PubMed  Google Scholar 

  • Carvalho CF, Carvalho SM, Souza B (2020) Coffee. In: Souza B, Vázquez LL, Maruccci RC (eds) Natural Enemies of Insect Pests in Neotropical Agroecosystems. Springer International Publishing, Springer Nature, Switzerland, pp 277–291

    Google Scholar 

  • Casaril CE, Oliveira Filho LCI, Santos JCP, Rosa MG (2019) Fauna edáfica em sistemas de produção de banana no Sul de Santa Catarina. Rev Bras Ciên Agr 14:e5613

    Google Scholar 

  • Cellini A, Blasioli A, Biondi E, Bertaccini A, Braschi I, Spinelli F (2017) Potential applications and limitations of electronic nose devices for plant disease diagnosis. 17:2596

  • Chaney WE (1998) Biological control of aphids in lettuce using in-field insectaries. In: Pickett CH, Bugg RL (eds) Enhancing biological control: habitat management to promote natural enemies of arthropod pests. University of California Press, Berkeley, pp 73–83

    Google Scholar 

  • Cingolani MF (2012) Parasitismo de huevos de Piezodorus guildinii (Hemiptera: Pentatomidae) por Trissolcus basalis y Telenomus podisi (Hymenoptera: Scelionidae) en el noreste de la provincia de Buenos Aires. Ph.D. Thesis, Universidad Nacional de La Plata (Buenos Aires, Argentina)

  • Corbett A, Plant RE (1993) Role of movement in the response of natural enemies to agroecosystem diversification: a theoretical evaluation. Env Entomol 22:519–531

    Google Scholar 

  • Corrêa-Ferreira BS, Alexandre TM, Pellizzaro EC, Moscard F, Bueno, AF (2010) Práticas de manejo de pragas utilizadas na soja e seu impacto sobre a cultura. Londrina: Embrapa Soja, 2010 (Embrapa Soja. Circular Técnica, 78) 16 p

  • Cui S, Alfaro Inocente EA, Acosta N, Keener HM, Zhu H, Ling PP (2019) Development of fast E-nose system for early stage diagnosis of aphid-stressed tomato plants. Sensors 19:3480

    CAS  PubMed Central  Google Scholar 

  • Cruz I, Figueiredo MLC, Silva RB (2010) Monitoramento de adultos de Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) e Diatraea saccharalis (Fabricius) (Lepidoptera: Pyralidae) em algumas regiões produtoras de milho no Brasil. Documentos/ Embrapa Milho e Sorgo n. 93, 42p

  • Dethier VG, Browne LB, Smith CN (1960) The designation of chemicals in terms of the responses they elicit from insects. J Econ Entomol 53:134–136

    CAS  Google Scholar 

  • Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MA (1990) Plant strategies of manipulating predator–prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3118

    CAS  PubMed  Google Scholar 

  • Ecole CC, Silva RA, Louzada JNC, Moraes JC, Barbos LR, Ambrogi BG (2002) Predação de ovos, larvas e pupas do bicho-mineiro-do-cafeeiro, Leucoptera coffeella (Guérin-Menèville & Perrottet, 1842) (Lepidoptera: Lyonetiidae) por Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae). Ciênc Agrotecnol 26:318–324

    Google Scholar 

  • Esquivel JF, Musolin DL, Jones WA, Rabitsch W, Greene JK, Toews MD, Schwertner CF, Grazia J, McPherson RM (2018) Nezara viridula (L.). In: McPherson JE (ed) Invasive stink bugs and related species (Pentatomoidea): Biology, Higher Systematics, Semiochemistry, and Management. CRC Press, UBoca Raton, pp 351–423

    Google Scholar 

  • Farias JR, Andow DA, Horikoshi RJ, Sorgatto RJ, Fresia P, Santos AC, Omoto C (2014) Field-evolved resistance to Cry1F maize by Spodoptera frugiperda (Lepidoptera: Noctuidae) in Brazil. Crop Prot 64:150–158

    Google Scholar 

  • Finch S, Collier RH (2000) Host-plant selection by insects – a theory based on ‘appropriate ⁄ inappropriate landings’ by pest insects of cruciferous plants. Entom Exp Et Appl 96:91–102

    Google Scholar 

  • Foti MC, Rostás M, Peri E, Park FC, Slimani T, Wratten SW, Colazza S (2017) Chemical ecology meets conservation biological control: identifying plant volatiles as predictors of floral resource suitability for an egg parasitoid of stink bugs. J Pest Sci 90:299–310

    Google Scholar 

  • Foti MC,·Peri E, Wajnberg E, Colazza S, Rostás M (2019) Contrasting olfactory responses of two egg parasitoids to buckwheat floral scent are reflected in field parasitism rates. J Pest Sci 92:747-756

  • Gomes L, Bianchi FJJA, Cardoso IM, Fernandes RBA, Fernandes Filho EI, Schulte POR (2020) Agroforestry systems can mitigate the impacts of climate change on coffee production: a spatially explicit assessment in Brazil. Agric Ecos Env 294:106858

    Google Scholar 

  • Gomez-Campo C (1980) Morphology and morpho-taxonomy of the tribe Brassiceae. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica crops and wild allies, biology and breeding. Japan Scientific Societies Press, Tokyo, pp 3–31

    Google Scholar 

  • Gontijo LM (2019) Engineering natural enemy shelters to enhance conservation biological control in field crops. Biol Control 130:155–163

    Google Scholar 

  • Gontijo LM, Beers EH, Snyder WE (2013) Flowers promote aphid suppression in apple orchards. Biol Control 66:8–15

    Google Scholar 

  • Gontijo LM, Saldanha AV, Souza DR, Viana RS, Bordin BC, Antonio AC (2018) Intercropping hampers the nocturnal biological control of aphids. Ann Appl Biol 172:148–159

    CAS  Google Scholar 

  • Haro, MM (2011) Controle biológico conservativo de pragas em cultivo protegido de tomate orgânic. Lavras: UFLA, 88 p. Dissertação (Mestrado em Entomologia)

  • Haro MM (2015) Chemical, spatial and temporal characteristics of Tagetes erecta floral resources mediating agricultural food webs. Lavras: UFLA, 154 p. Tese (Doutorado em Entomologia)

  • Haro MM, Resende ALS, Silva VF, Souza B, Silveira LCP (2015) Parasitoids of horticultural pests associated to commercial development stages of cultivated Apiaceae. Entomotropica 30:174–180

    Google Scholar 

  • Haro MM, Silveira LCP, Wilby A (2018) Stability lies in flowers: plant diversification mediating shifts in arthropod food webs. PlosOne 13(2):e0193045

    Google Scholar 

  • Harterreiten-Souza ES, Togni PHB, Pires CSS, Sujii ER (2014) The role of integrating agroforestry and vegetable planting in structuring communities of herbivorous insects and their natural enemies in the Neotropical region. Agrofor Sys 88:205–219

    Google Scholar 

  • Harterreiten-Souza ES, Togni PHB, Capellari RS, Bickel D, Pujol-Luz JR, Sujii ER (2021) Spatio temporal dynamics of active flying Diptera predators among different farmland habitats. Agr Forest Entomol 23:334–431

    Google Scholar 

  • Hilje L, Stansly PA (2008) Living ground covers for management of Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae) and tomato yellow mottle virus in Costa Rica. Crop Protect 27:10–16

    Google Scholar 

  • Hogg BN, Nelson EH, Mills NJ, Daane KM (2011) Floral resources enhance aphid suppression by a hoverfly. Entomol Exp Appl 141:138–144

    Google Scholar 

  • Hokkanen HMT (1991) Trap cropping in pest management. Ann Rev Entomol 36:119–138

    Google Scholar 

  • Huang B, Shi X, Yu D, Öborn I, Blombäck K, Pagella TF, Wang H, Sun W, Sinclair FL (2006) Environmental assessment of small-scale vegetable farming systems in peri-urban areas of the Yangtze River Delta Region, China. Agr Ecosyst Envir 112:391–402

    Google Scholar 

  • Isbell F, Adler PR, Eisenhauer N, Fornara D, Kimmel K, Kremen C, Letourneau DK, Liebman M, Polley HW, Quijas S, Scherer-Lorenzen M (2017) Benefits of increasing plant diversity in sustainable agroecosystems. J Ecol 105:871–879

    Google Scholar 

  • Janssen A, Sabelis MW, Magalhães S, Montserrat M, van der Hammen T (2007) Habitat Structure Affect Intraguild Predation. Ecol 88:2713–2719

    Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, Chicago

    Google Scholar 

  • Khan ZR, Midega CAO, Wadhams LJ, Pickett JA, Mumuni A (2007) Evaluation of Napier grass (Pennisetum purpureum) varieties for use as trap plants for the management of African stemborer (Busseola fusca) in a ‘push –pull’ strategy. Entomol Exp Appl 124:201–211

    Google Scholar 

  • Khan ZR, Pickett JA, Hassanali A, Hooper AM, Midega CAO (2008) Desmodium species and associated biochemical traits for controlling Striga species: present and future prospects. Weed Res 48:302–306

    CAS  Google Scholar 

  • Khan ZR, Midega CAO, Pittchar JO, Murage AW, Birkett MA, Bruce TJA, Pickett JA (2014) Achieving food security for one million sub-Saharan African poor through push–pull innovation by 2020. Phil Trans R Soc B 369:1–10

    Google Scholar 

  • Kollist H, Zandalinas SI, Sengupta S, Nuhkat M, Kangasjärvi J, Mittler R (2019) Rapid responses to abiotic stress: priming the landscape for the signal transduction network. Trends Pl Sci 24:25–37

    CAS  Google Scholar 

  • Koss AM, Snyder WE (2005) Alternative prey disrupt biocontrol by a guild of generalist predators. Biol Control 32:243–251

    Google Scholar 

  • Laumann RA, Aquino MFS, Blassioli Moraes MC, Pareja M, Borges M (2009) Response of the egg parasitoids Trissolcus basalis and Telenomus podisi to compounds from defensive secretions of stink bugs. J Chem Ecol 35:8–19

    CAS  PubMed  Google Scholar 

  • Letourneau DK, Jedlicka JA, Bothwell SG, Moreno CR (2009) Effects of natural enemy biodiversity on the suppression of arthropod herbivores in terrestrial ecosystems. Ann Rev Ecol Evol Syst 40:573–592

    Google Scholar 

  • Letourneau DK, Ambrecht I, Rivera BS, Lerma JM, Carmona EJ, Daza MC, Escobar S, Galindo V, Gutiérrez C, López SD, Mejía JL, Rangel AMA, Rangel JH, Rivera L, Saavedra CA, Torres AM, Trujillo AR (2011) Does plant diversity benefit agroecosystems? A synthetic review. Ecol Appl 21:9–21

    PubMed  Google Scholar 

  • Lichtenberg, EM Kennedy CM, Kremen C, Batáry P, Berendse F, Bommarco R, Bosque-Pérez NA, Carvalheiro LG, Snyder WE, Williams NM, Winfree R, Klatt BK, Åström S, Benjamin F, Brittain C, Chaplin-Kramer R, Clough T, Danforth B, Diekötter T, Eigenbrode SD, Ekroos J, Elle E, Freitas Materić D, Lanza M, Sulzer P, Herbig J, Bruhn D, Turner C, Mason N, Gauci V (2015) Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC. Anal Bioanal Chem 407:7757-7763.BM, Fukuda Y, Gaines-Day HR, Grab H, Gratton C, Holzschuh A, Isaacs R, Isaia M, Jha S, Jonason D, Jones CP, Klein AM, Krauss J, Letourneau DK, Macfadyen S, Mallinger RE, Martin EA, Martinez E, Memmott J, Morandin L, Neame L, Otieno M, Park MG, Pfiffner L, Pocock MJO, Ponce C, Potts SG, Poveda K, Ramos M, Rosenheim JA, Rundlöf M, Sardiñas H, Saunders Me, Schon NE, Sciligo AR, Sidhu CS, Steffan-Dewenter I, Tscharntke T, Veselý M, Weisser W, Wilson JK, Crowder DW (2017) A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Glob Change Biol 23:4946- 4957

  • Lira EC, Bolzan A, Nascimento ARB, Amaral FSA, Kanno RH, Kaise IS, Omoto C (2020) Resistance of Spodoptera frugiperda (Lepidoptera: Noctuidae) to spinetoram: inheritance and cross-resistance to spinosad. Pest Manag Sci 76:2674–2680

  • Marouelli WA, Medeiros MA, Souza RF, Resende FV (2011) Produção de tomateiro orgânico irrigado por aspersão e gotejamento, em cultivo solteiro e consorciado com coentro. Hortic Bras 29:429–434

    Google Scholar 

  • Materić D, Bruhn D, Turner C, Morgan G, Mason N, Gauci V (2015) Methods in plant foliar volatile organic compounds research. App Plant Sienc 3:1–10

    Google Scholar 

  • Mathews CR, Brown MW, Bottrell DG (2007) Leaf extrafloral nectaries enhance biological control of a key economic pest, Grapholita molesta (Lepidoptera : Tortricidae), in peach (Rosales: Rosaceae). Env Entomol 36:383–389

    Google Scholar 

  • Medeiros MA, Sujii ER, Morais HC (2009a) Effect of plant diversification on abundance of South American tomato pinworm and predators in two cropping systems. Hort Bras 27:300–306

    Google Scholar 

  • Medeiros MA, Resende FV, Togni PHB, Sujii ER (2009b) Efeito do consórcio cultural no manejo ecológico de insetos em tomateiro. Brasília: Embrapa Hortaliças, 2009 (Embrapa Hortaliças. Comunicado Técnico, 65) 9p

  • Medeiros MAD, Sujii ER, Rasi GC, Liz RS, Morais HCD (2009c) Padrão de oviposição e tabela de vida da traça-do-tomateiro Tuta absoluta (Meyrick) (Lepidoptera, Gelechiidae). Rev Bras Entomol 53:452–456

    Google Scholar 

  • Medeiros MA, Ribeiro PA, Morais HC, Castelo Branco M, Sujii ER, Salgado-Laboriau ML (2010) Identification of plant families associated with the predators Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae) and Hippodamia convergens Guérin-Menéville (Coleoptera: Coccinelidae) using pollen grain as a natural marker. Braz J Biol 70:293–300

    CAS  PubMed  Google Scholar 

  • Medeiros MA, Sujii ER, Morais HC (2011) Fatores de mortalidade na fase de ovo de Tuta absoluta em sistemas de produção orgânica e convencional de tomate. Bragantia 70:72–80

    Google Scholar 

  • Michereff MFF, Michereff Filho M, Blassioli-Moraes MC, Laumann RA, Diniz IR, Borges M (2015) Effect of resistant and susceptible soybean cultivars on the attraction of egg parasitoids under field conditions. J Appl Entomol 193:207–216

    Google Scholar 

  • Michereff MFF, Borges M, Aquino MFS, Laumann RA, Mendes Gomes ACM, Blassioli-Moraes MC (2016) The influence of volatile semiochemicals from stink bug eggs and oviposition-damaged plants on the foraging behaviour of the egg parasitoid Telenomus podisi. Bull Entomol Res 106:663–671

    CAS  PubMed  Google Scholar 

  • Michereff MFF, Magalhães DM, Hassemer MJ, Laumann RA, Zhou JJ, Ribeiro PEA, Viana PA, Guimarães PEO, Schimmelpfeng PHC, Borges M, Pickett JA, Birkett MA, Blassioli-Moraes MC (2019) Variability in herbivore-induced defence signalling across different maize genotypes impacts significantly on natural enemy foraging behaviour. J Pest Sci 92:723–736

    Google Scholar 

  • Michereff MFF, Grynberg P, Togawa RC. Costa MMC, Laumann RA, Zhou J-J, Schimmelpfegn PHC, Borges M, Picket JÁ, Birkett MA, Blassioli-Moraes, MC. (2021) Priming of indirect defence responses in maize is shown to be genotype-specific. Arthropod-Plant Interactions 15: 313–328. https://doi.org/10.1007/s11829-021-09826-4

  • Mizell RF, Riddle TC, Blount AS (2008) Trap cropping for management of stink and leaf footed bugs. Proc Fl St Hort Soc 121:377–382

    Google Scholar 

  • Moreira HJC, Aragão FD. (2009) Manual de Pragas do Milho. Campinas _SP. Disponível em: https://www.agrolink.com.br/downloads/manual%20de%20pragas%20do%20milho.pdf. Acessed 05 Nov 2021

  • Ngowi AV, Mbise TJ, Ijani AS, London L, Ajayi OC (2007) Pesticides use by smallholder farmers in vegetable production in Northern Tanzania. Crop Potect 26:1617–1624

    CAS  Google Scholar 

  • Nicholls CI, Altieri MA (2004) Agroecological bases of ecological engineering for pest management. In: Gurr GM, Wratten SD, Altieri MA (eds) Ecological engineering for pest management: advances in habitat manipulation for arthropods. CSIRO publishing, Collingwood, pp 33–54

    Google Scholar 

  • Niederbacher B, Winkler JB, Schnitzler JP (2015) Volatile organic compounds as non-invasive markers for plant phenotyping. J Exp Bot 66:5403–5416

    CAS  PubMed  Google Scholar 

  • Norris RF, Kogan M (2000) Interactions between weeds, arthropod pests, and their natural enemies in managed ecosystems. Weed Sc 48:94–158

    CAS  Google Scholar 

  • Oelofse M, Hogh-Jensenb H, Abreuc LS, Almeidad GF, Huie QY, Sultanf T, Neergarrd A (2010) Certified organic agriculture in China and Brazil: market accessibility and outcomes following adoption. Ecol Econ 69:1785–1793

    Google Scholar 

  • Orr R, Nelson PN (2018) Impacts of soil abiotic attributes on Fusarium wilt, focusing on bananas. Appl Soil Ecol 132:20–33

    Google Scholar 

  • Panizzi AR (1997) Wild hosts of pentatomids: ecological significance and role in their pest status on crops. Ann Rev Entomol 42:99–122

    CAS  Google Scholar 

  • Panizzi AR, Slansky F Jr (1991) Suitability of selected legumes and the effect of nymphal and adult nutrition in the southern green stink bug (Hemiptera: Heteroptera:Pentatomidae). J Econ Entomol 84:103–113

    Google Scholar 

  • Panizzi AR, Saraiva SI (1993) Performance of nymphal and adult southern green stink bug on an overwintering host plant and impact of nymph to adult foodswitch. Entomol Exp Appl 68:109–115

    Google Scholar 

  • Panizzi AR, Silva FAC (2012) Seed-sucking bugs (Heteroptera). In: Panizzi AR, Parra JRP (eds) Insect Bioecology and Nutrition for Integrated Pest Management. CRC Pres, Boca Raton, pp 295–324

    Google Scholar 

  • Panizzi AR, Lucini T (2017) Host plant-stink bug (Pentatomidae) relationships. In: Čokl A, Borges M (eds) Stink bugs: biorational control based on communication processes, 1st edn. CRC Press, Boca Raton, pp 31–58

    Google Scholar 

  • Pantoja GM (2018) Artrópodes predadores da broca-do-café associados ao ingá. Dissertação (Mestrado)-Universidade Federal de Viçosa, Viçosa, MG, 57 p

  • Patt JM, Hamilton GC, Lashomb JH (1997) Foraging success of parasitoid wasps on flowers: interplay of insect morphology, floral architecture and searching behavior. Entomol Exp Appl 83:21–30

    Google Scholar 

  • Pattison AB, Wright CL, Kukulies TL, Molina AB (2014) Ground cover management alters development of Fusarium wilt symptoms in Ducasse bananas. Australas Plant Pathol 43:465–476

    Google Scholar 

  • Pickett JA, Khan ZR (2016) Plant volatile-mediated signalling and its application in agriculture: successes and challenges. New Phytol 212:856–870

    CAS  PubMed  Google Scholar 

  • Poveda K, Gómez MI, Martínez E (2008) Diversification practices: their effect on pest regulation and production. Rev Col Entomol 34:131–144

    Google Scholar 

  • Prokopy RJ, Owens ED (1983) Visual detection of plants by herbivorous insects Ann. Rev Entomol. 28:337–364

    Google Scholar 

  • Quaresma MAL, Oliveira FL, Silva DMN, Coelho RI, Costa EC (2015) Desempenho de bananeiras cultivar “nanicão” sobre cobertura viva de solo no semiárido. Revista Caatinga 28:110–115

    Google Scholar 

  • Railsback SF, Johnson MD (2014) Effects of land use on bird populations and pest control services on coffee farms. PNAS 111:6109–6114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ranum P, Pena-Rosas JP, Garcia-Casal MN (2014) Global maize production, utilization, and consuption. Ann N Y Acad Sci 1312:105–112

    PubMed  Google Scholar 

  • Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614

    PubMed  Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habibi R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32:273–303

    Google Scholar 

  • Rea J, Wratten S, Sedcole R, Cameron P, Davis S (2002) Trap cropping to manage green vegetable bug Nezara viridula (L.) (Heteroptera: Pentatomidae) in sweet corn in New Zealand. Agric for Entomol 4:101–107

    Google Scholar 

  • Resende ALS, Haro MM, Silva VF, Souza B, Silveira LCP (2012) Diversidade de predadores em coentro, endro e funcho sob manejo orgânico. Arq Inst Biol 79:193–199

    Google Scholar 

  • Resende ALS, Ferreira RB, Silveira LCP, Pereira LPS, Landim DV, Carvalho CF (2015) Desenvolvimento e reprodução de Eriopisconnexa (Germar, 1824) (ColeopteraCoccinellidae) alimentada com recursos florais de coentro (Coriandrumsativum L.) Entomotropica. 30:12–19

  • Resende ALS, Souza B, Ferreira RB, Aguir-Menezes EL (2017) Flowers of Apiaceous species as sources of pollen for adults of Chrysoperla externa (Hagen) (Neuroptera). Biol Control 106:40–44

    Google Scholar 

  • Rezende MQ, Venzon M, Perez AL, Cardoso IM, Janssen A (2014) Extrafloral nectaries of associated trees can enhance natural pest control. Agr Ecos Env 188:198–203

    Google Scholar 

  • Rezende MQ, Venzon M, Santos PS, Cardoso IM, Janssen A (2021) Extrafloral nectary-bearing leguminous trees enhance pest control and increase fruit weight in associated coffee plants. Agr Ecosy Environ 319:107538

    Google Scholar 

  • Ribeiro AEL, Castellani MA, Pérez-Maluf R, Moreira AA, Leite AS, Costa DR (2014) Ocurrence of green lacewings (Neuroptera: Chrysopidae) in two coffee cropping systems. Afr J Agrl Res 9:1597–1603

    Google Scholar 

  • Ribeiro AL, Gontijo LM (2017) Alyssum flowers promote the biological control of collard pests. Biocontrol 62:185–196

    Google Scholar 

  • Robinson KA, Jonsson M, Wratten SD, Wade MR, Buckley HL (2008) Implications of floral resources for predation by an omnivorous lacewing. Basic Appl Ecol 9:172–181

    Google Scholar 

  • Root RB (1973) Organization of a plant-arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol Mon 43:95–124

    Google Scholar 

  • Rosado, MC Plantas favoráveis a agentes de controle biológico (2007) Dissertação (Mestrado em Entomologia) - Universidade Federal de Viçosa, Viçosa, MG. 59 p

  • Rosado MC, de Araújo GJ, Pallini A, Venzon M (2021) Cover crop intercropping increases biological control in coffee crops. Biol Control 160:104675

    Google Scholar 

  • Rosenheim JA, Rusch A, Schellhorn N, Wanger TC, Wratten S, Zhang W (2016) When natural habitat fails to enhance biological pest control – five hypotheses. Biol Cons 204:449–458

    Google Scholar 

  • Rusch A, Bommarco R, Jonsson M, Smith HG, Ekbom, (2016) Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. J Appl Ecol 50:345–354

    Google Scholar 

  • Saldanha AV, Gontijo LM, Carvalho RMR, Vasconcelos CJ, Corrêa AS, Gandra RLR (2019) Companion planting enhances pest suppression despite reducing parasitoid emergence. Bas Appl Ecol 41:45–55

    Google Scholar 

  • Sarthou JP, Badoz A, Vaissière B, Chevallier A, Rusch A (2014) Local more than landscape parameters structure natural enemy communities during their overwintering in semi-natural habitats. Agr Ecosys Environ 194:17–28

    Google Scholar 

  • Savary S, Willocquet L, Pethybridge SJ, Esker P, McRoberts N, Nelson A (2019) The global burden of pathogens and pests on major food crops. Nat Ecol Evol 3:430–439

    PubMed  Google Scholar 

  • Sheehan W (1986) Response by specialist and generalist natural enemies to agroecosystem diversification: a selective review. Env Entomol 15:456–461

    Google Scholar 

  • Shields MW, Johnson AC, Pandey S, Cullen R, González-Chang M, Wratten SD, Gurr GM (2019) History, current situation and challenges for conservation biological control. Biol Control 131:25–35

    Google Scholar 

  • Silva CCA, Blassioli-Moraes MC, Borges M, Laumann RA (2018) Food diversification with associated plants increases the performance of the Neotropical stink bug, Chinavia impicticornis (Hemiptera: Pentatomidae). Arth Pl Int 13:423–429

    Google Scholar 

  • Silva JHC, Saldanha AV, Carvalho RMR, Machado CFM, Flausino BF, Antonio AC, Gontijo LM (2021) The interspecific variation of plant traits in brassicas engenders stronger aphid suppression than the intraspecific variation of single plant trait. J Pest Sci. https://doi.org/10.1007/s10340-021-01421-z

    Article  Google Scholar 

  • Silva VF, Silveira LCP, Santos A, Santos AJN, Tomazella VB (2016) Companion plants associated with kale increase the abundance and species richness of the natural-enemies of Lipaphis erysimi (Kaltenbach) (Hemiptera:Aphididae). Afr J Agr Res 11:2630–2639

    Google Scholar 

  • Silveira LCP, Berti Filho E, Pierre LSR, Peres FSC, Louzada JNC (2009) Marigold (Tagetes erecta L.) as an attractive crop to natural enemies in onion fields. Sci Agr 66:780–787

    Google Scholar 

  • Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG, Leeson G, Nicol HI, Orre-Gordon G (2011) Attract and reward: combining chemical ecology and habitat manipulation to enhance biological control in field crops. J Appl Ecol 48:580–590

    Google Scholar 

  • Soto-Pinto L, Romero-Alvarado Y, Caballero-Nieto J, Segura Warnholtz G (2001) Woody plant diversity and structure of shade-grown-coffee plantations in Northern Chiapas, Mexico. Rev Biol Trop 49:977–987

    CAS  PubMed  Google Scholar 

  • Souza HN, Cardoso IM, Fernandes JM, Garcia FCP, Bonfim VR, Santos AC, Carvalho AF, Mendonca ES (2010) Selection of native trees for intercropping with coffee in the Atlantic Rainforest biome. Agrofor Syst 80:1–16

    Google Scholar 

  • Souza HN, Goede RGM, Brussaard L, Cardoso IM, Duarte EMG, Fernandes RBA, Gomes LC, Pulleman MM (2012) Protective shade, tree diversity and soil properties in coffee agroforestry systems in the Atlantic Rainforest biome. Agr Ecos Env 146:0179–0196

    Google Scholar 

  • Souza IL, Tomazella VB, Santos AJN, Moraes T, Silveira LCP (2019) Parasitoids diversity in Organic Sweet Pepper (Capsicum annuum) associated with Basil (Ocimum basilicum) and Marigold (Tagetes erecta). Braz J Biol 79:603–611

    CAS  PubMed  Google Scholar 

  • Straub CS, Simasek NP, Dohm R, Gapinski MR, Aikens EO, Nagy C (2014) Plant diversity increases herbivore movement and vulnerability to predation. Bas Appl Ecol 15:50–58

    Google Scholar 

  • Thiery D, Visser JH (1986) Masking of host plant odour in the olfactory orientation of the Colorado potato beetle. Entomol Exp Appl 41:165–172

    Google Scholar 

  • Tamiru A, Bruce TJA, Woodcock CM, Caulfield JC, Midega CAO, Ogol CKPO, Mayon P, Birkett MA, Pickett JA, Khan ZR (2011) Maize landraces recruit egg and larval parasitoids in response to egg deposition by a herbivore. Ecol Lett 14:1075–1083

    PubMed  Google Scholar 

  • Tillman PG (2006) Sorghum as a trap crop for Nezara viridula (L.) (Heteroptera: Pentatomidae) in cotton. Environ Entomol 35:771–783

    Google Scholar 

  • Tillman PG, Cottrell TE (2012) Case study: Trap crop with pheromone capture traps for managing Euschistus servus (Heteroptera: Pentatomidae) in cotton. Psyche ID 401703 10 pp. | https://doi.org/10.1155/2012/401703

  • Togni PHB, Frizzas MR, Medeiros MA, Nakasu EYT, Pires CSS, Sujii ERS (2009) Dinâmica populacional de Bemisia tabaci biótipo B em tomate monocultivo e consorciado com coentro sob cultivo organico e convencional. Hort Bras 27:183–188

    Google Scholar 

  • Togni PHB, Laumann RA, Medeiros MA, Sujii ER (2010a) Odour masking of tomato volatiles by coriander volatiles in host plant selection of Bemisia tabaci biotype B. Entomol Exp Appl 136:164–173

    Google Scholar 

  • Togni PHB, Cavalcante KR, Langer LF, Gravina CS, Medeiros MA, Pires CSS, Fontes EMG, Sujii ER (2010b) Conservação de inimigos naturais (Insecta) em tomateiro orgânico. Arq Inst Biol 77:669–679

    Google Scholar 

  • Togni PHB, Venzon M, Muniz CA, Martins EF, Pallini A, Sujii ER (2016) Mechanisms underlying the innate attraction of an aphidophagous coccinellid to coriander plants: implications for conservation biological control. Biol Control 92:77–84

    Google Scholar 

  • Togni PHB, Marouelli WA, Inoue-Nagata AK, Pires CSS, Sujii ER (2018) Integrated cultural practices for whitefly management in organic tomato. J Appl Entomol 142:998–1007

    Google Scholar 

  • Togni PHB, Venzon M, Souza LM, Santos JPCR, Sujii ER (2019a) Biodiversity provides whitefly biological control based on farm management. J Pest Sci 92:393–403

    Google Scholar 

  • Togni PHB, Venzon M, Souza LM, Sousa AATC, Harterreiten-Souza ES, Pires CSS, Sujii ER (2019b) Dynamics of predatory and herbivorous insects at the farm scale: the role of cropped and noncropped habitats. Agr for Entomol 21:351–362

    Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005a) Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecol Lett 8:857–874

    Google Scholar 

  • Tscharntke T, Tylianakis JM, Rand TA, Didham RK, Fahrig L, Batáry P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes-eight hypotheses. Biol Rev 87:661–685

    PubMed  Google Scholar 

  • Tscharntke T, Karp DS, Chaplin-Kramer R, Batáry P, DeClerck F, Gratton C, Hunt L, Ives A, Jonsson M, Larsen A, Martin EA, Martínez-Salinas A, Meehan TD, O’Rourke M, Poveda K, Tylianakis JM, Klein AM, Tscharntke T (2005b) Spatiotemporal variation in the diversity of Hymenoptera across a tropical habitat gradient. Ecology 86:3296–3302

    Google Scholar 

  • Velasco LRI, Walter GH (1993) Potential of host- switching in Nezara viridula (Hemiptera: Pentatomidae) to enhance survival and reproduction. Environ Entomol 22:326–333

    Google Scholar 

  • Venzon M, Janssen A, Sabelis MW (2001) Prey preference, intraguild predation and population dynamics of an arthropod food web on plants. Exp Appl Acarol 25:785–808

    CAS  PubMed  Google Scholar 

  • Venzon M, Rosado MC, Euzébio DE, Souza B, Schoereder JH (2006) Suitability of leguminous cover crop pollens as food source for the green lacewing Chrysoperla externa (Hagen) (Neuroptera: Chrysopidae). Neotrop Entomol 35:371–376

    PubMed  Google Scholar 

  • Venzon M, Togni PHB, Amaral DSSL, Rezende MQ, Batista MC, Chiguachi JAM, Martins EF, Perez A (2018) Mobilisation des mécanismes de régulation naturelle des ravageurs via desplantes à multiples services écosystémiques. Inn Agronom 64:83–95

    Google Scholar 

  • Venzon M, Togni PHB, Chiguachi JAM, Pantoja GM, Silva Brito EA, Sujii ER (2019a) Agrobiodiversidade como estratégia de manejo de pragas. Informe Agropecuário (belo Horizonte) 40:21–29

    Google Scholar 

  • Venzon M, Togni PHB, Chiguachi JAM, Pantoja GM, da Silva Brito EA, Sujii ER (2019b) Agrobiodiversidade como estratégia de manejo de pragas. Inf Agropec 40:21–29

    Google Scholar 

  • Vieira CR, Blassioli-Moraes MC, Borges M, Pires CSS, Sujii ER, Laumann RA (2013) cis-Jasmone indirect action on egg parasitoids (Hymenoptera: Scelionidae) and its application in biological control of soybean stink bugs (Hemiptera: Pentatomidae). Biol Control 64:75–82

    CAS  Google Scholar 

  • Vieira CR, Blassioli-Moraes MC, Borges M, Pires CSS, Sujii ER, Laumann RA (2014) Field evaluation of (E)-2-hexenal efficacy for behavioral manipulation of egg parasitoids in soybean. Biocontrol 59:525–537

    Google Scholar 

  • Volkov A, Ranatunga DR (2006) Plants as Environmental biosensors. Plant Sign Behav 1:105–115

    Google Scholar 

  • Wäckers FL (2005) Suitability of (extra-) floral nectar, pollen, and honeydew as insect food sources. In: Wäckers FL, Van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge p, pp 17–74

    Google Scholar 

  • Zaché B (2009) Manejo de biodiversidade de insetos-praga e inimigos naturais em cultivo de alface (Lactuca sativa) orgânica através do uso de cravo-de-defunto (Tagetes erecta) como planta atrativa. Lavras: UFLA,60 p. Dissertação (Mestrado em Entomologia)

Download references

Funding

This work received financial support from the National Council of Technological and Scientific Development (CNPq), the Federal District Research Foundation (FAP-DF) and the Brazilian Corporation of Agricultural Research (EMBRAPA) (20.19.00.182.00.00). The work at Rothamsted forms part of the Smart Crop Protection (SCP) strategic programme (BBS/OS/CP/000001) funded through Biotechnology and Biological Sciences Research Council’s GCRF Translation Awards BBSRC Reference: BB/R020000/1. Reported studies on coffee had support from CNPq and from Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG). Reports studies on diversification from Santa Catarina State Agricultural Research and Rural Extension Agency (Epagri) had support from CNPq (429226/2018-7) and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC - 2021TR001441).

Author information

Authors and Affiliations

Authors

Contributions

This work was conceived during the workshop “Stakeholders engagement workshop: Companion plants and their semiochemicals for pest control in agriculture”. All authors participate in the elaboration of the first draft and revised versions of the ms. All authors approved the version considered for publication.

Corresponding author

Correspondence to Raúl Alberto Laumann.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Edited by Juliano Morimoto

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blassioli-Moraes, M.C., Venzon, M., Silveira, L.C.P. et al. Companion and Smart Plants: Scientific Background to Promote Conservation Biological Control. Neotrop Entomol 51, 171–187 (2022). https://doi.org/10.1007/s13744-021-00939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-021-00939-2

Keywords

Navigation