Skip to main content
Log in

Fabrication of a simple and easy-to-make piezoelectric actuator and its use as phase shifter in digital speckle pattern interferometry

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this report, design and assembly of a simple, easy-to-make and low-cost piezoelectric actuator (PZA) with one degree of freedom for application in phase-shifting interferometry is described. The PZA is designed in a way that its components can easily be manufactured and assembled. In the developed PZA, a series of ring-shaped piezo-ceramics are assembled inside a stainless steel case and through a couple of plate springs are preloaded. Planar electrodes are cut from a thin beryllium copper plate using wire-cut EDM and used on top and bottom sides of each ceramic plate. The supply voltage is applied to the electrodes by a designed control electronic circuit connected directly to a computer through a standard parallel port. A graphical user interface is developed in the MATLAB environment for controlling the converter. The electromechanical response of the PZA is studied by applying a calibration procedure based on using a Michelson interferometer. It is shown that by increasing the DC voltage from 0 to 200 V, the PZA has a good linear response. By using the PZA for strain field measurement in a rectangular steel plate, it is shown that the linear response of the designed PZA makes it a suitable candidate for use in Carré phase-shifting interferometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12: a

Similar content being viewed by others

References

  1. H. Schreiber, J.H. Bruning, Phase shifting interferometry. In: Optical Shop Testing, 3rd edn (2007), pp. 547–666

  2. A. Beigzadeh, M.R. Vaziri, F. Ziaie, Modelling of a holographic interferometry based calorimeter for radiation dosimetry. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel. Spectrom. Detect. Assoc. Equip. 864, 40–49 (2017)

    Article  ADS  Google Scholar 

  3. K. Creath, Phase-shifting speckle interferometry. Appl. Opt. 24, 3053–3058 (1985)

    Article  ADS  Google Scholar 

  4. R. Jones, C. Wykes, Holographic and Speckle Interferometry, vol. 6 (Cambridge University Press, Cambridge, 1989)

    Book  Google Scholar 

  5. W. An, T.E. Carlsson, Speckle interferometry for measurement of continuous deformations. Opt. Lasers Eng. 40, 529–541 (2003)

    Article  Google Scholar 

  6. Z. Malacara, M. Servin, Interferogram Analysis for Optical Testing, vol. 84 (CRC Press, Boca Raton, 2016)

    Google Scholar 

  7. D. Malacara, Optical Shop Testing, vol. 59 (Wiley, Hoboken, 2007)

    Book  Google Scholar 

  8. R. S. Sirohi, Speckle methods in experimental mechanics. In: Speckle Metrology. (Marcel Dekker, New York, 1993)

  9. P. Carré, Installation et utilisation du comparateur photoélectrique et interférentiel du Bureau International des Poids et Mesures. Metrologia 2(1), 13 (1966)

    Article  ADS  Google Scholar 

  10. Q. Kemao, S. Fangjun, W. Xiaoping, Determination of the best phase step of the Carré algorithm in phase shifting interferometry. Meas. Sci. Technol. 11(8), 1220 (2000)

    Article  ADS  Google Scholar 

  11. S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, Compensation of aberrations in Fresnel off-axis digital holography. Proc. Fringe 2001, 407–412 (2001)

    Google Scholar 

  12. K. Creath, Phase-shifting holographic interferometry, in Holographic Interferometry, ed. by P.K. Rastogi (Springer, Berlin, 1994), pp. 109–150

    Chapter  Google Scholar 

  13. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley, Hoboken, 2006)

    Google Scholar 

  14. L. Bruno, A. Poggialini, G. Felice, Design and calibration of a piezoelectric actuator for interferometric applications. Opt. Lasers Eng. 45, 1148–1156 (2007)

    Article  Google Scholar 

  15. https://www.ceramtec.com

  16. R. Denker, R. Schilling, V. Haerlin, B. Lau, Phase-stepping device for interferometry for less than 1 €, in Interferometry in Speckle Light, ed. by P. Jacquot, J.-M. Fournier (Springer, Berlin, 2000), pp. 445–452

    Chapter  Google Scholar 

  17. A. Moore, J. Tyrer, An electronic speckle pattern interferometer for complete in-plane displacement measurement. Meas. Sci. Technol. 1(10), 1024 (1990)

    Article  ADS  Google Scholar 

  18. K.J. Gåsvik, Optical Metrology (Wiley, Hoboken, 2003)

    Google Scholar 

  19. E. Cuche, P. Marquet, C. Depeursinge, Spatial filtering for zero-order and twin-image elimination in digital off-axis holography. Appl. Opt. 39(23), 4070–4075 (2000)

    Article  ADS  Google Scholar 

  20. M.R. Vaziri, N.P. Shabestari, I. Alidokht, B. Zarefarsani, Suppression of zero order diffraction from the reconstructed images in digital holography. IJPR 15, 447–452 (2016)

    Article  Google Scholar 

  21. D.W. Robinson, G.T. Reid, Interferogram Analysis: Digital Fringe Pattern Measurement Techniques (CRC Press, Boca Raton, 1993)

    Google Scholar 

  22. G. Ateshian, A B-spline least-squares surface-fitting method for articular surfaces of diarthrodial joints. J. Biomech. Eng. 115, 366–373 (1993)

    Article  Google Scholar 

  23. F.L. Di Scalea, S. Hong, G. Cloud, Whole-field strain measurement in a pin-loaded plate by electronic speckle pattern interferometry and the finite element method. Exp. Mech. 38(1), 55–60 (1998)

    Article  Google Scholar 

  24. E. Vikhagen, TV holography: spatial resolution and signal resolution in deformation analysis. Appl. Opt. 30(4), 420–425 (1991)

    Article  ADS  Google Scholar 

  25. R. Ritter, K. Galanulis, D. Winter, E. Müller, B. Breuckmann, Notes on the application of electronic speckle pattern interferometry. Opt. Lasers Eng. 26, 283–299 (1997)

    Article  Google Scholar 

  26. H.A. Aebischer, S. Waldner, A simple and effective method for filtering speckle-interferometric phase fringe patterns. Opt. Commun. 162, 205–210 (1999)

    Article  ADS  Google Scholar 

  27. D. Kerr, G. Kaufmann, G. Galizzi, Unwrapping of interferometric phase-fringe maps by the discrete cosine transform. Appl. Opt. 35(5), 810–816 (1996)

    Article  ADS  Google Scholar 

  28. IDEA, V1.7, (Graz University of Technology, Graz). http://optics.tu-graz.ac.at. Accessed 2017

  29. M. Hipp, P. Reiterer, User manual for IDEA 1.7. Institut für Experimental Physik Technische Universität Graz (2003)

  30. M. Falahati, M.R. Vaziri, A. Beigzadeh, H. Afarideh, Design, modelling and construction of a continuous nuclear gauge for measuring the fluid levels. J. Instrum. 13(02), P02028 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Rashidian Vaziri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Partovi Shabestari, N., Rashidian Vaziri, M.R., Bakhshandeh, M. et al. Fabrication of a simple and easy-to-make piezoelectric actuator and its use as phase shifter in digital speckle pattern interferometry. J Opt 48, 272–282 (2019). https://doi.org/10.1007/s12596-019-00522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12596-019-00522-4

Keywords

Navigation