Skip to main content

Advertisement

Log in

Aflatoxins: Implications on Health

  • Review Article
  • Published:
Indian Journal of Clinical Biochemistry Aims and scope Submit manuscript

Abstract

Environmental occurrence of Aspergillus and other fungal spores are hazardous to humans and animals. They cause a broad spectrum of clinical complications. Contamination of aflatoxins in agri-food and feed due to A. flavus and A. parasiticus result in toxicity in humans and animals. Recent advances in aspergillus genomics and aflatoxin management practices are encouraging to tackle the challenges posed by important aspergillus species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Usha Sarma P. Fascinating potential of aspergilli. Indian J Clin Biochem IJCB. 2010;25(4):331–4.

    Article  Google Scholar 

  2. Bhetariya PJ, Madan T, Basir SF, Varma A, Usha SP. Allergens/Antigens, toxins and polyketides of important Aspergillus species. Indian J Clin Biochem IJCB. 2011;26(2):104–19.

    Article  CAS  PubMed  Google Scholar 

  3. Hussein HS, Brasel JM. Toxicity, metabolism, and impact of mycotoxins on humans and animals. Toxicology. 2001;167(2):101–34.

    Article  CAS  PubMed  Google Scholar 

  4. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology. 2007;153(Pt 6):1677–92.

    Article  CAS  PubMed  Google Scholar 

  5. Doi AM, Patterson PE, Gallagher EP. Variability in aflatoxin B(1)-macromolecular binding and relationship to biotransformation enzyme expression in human prenatal and adult liver. Toxicol Appl Pharmacol. 2002;181(1):48–59.

    Article  CAS  PubMed  Google Scholar 

  6. Neal GE, Eaton DL, Judah DJ, Verma A. Metabolism and toxicity of aflatoxins M1 and B1 in human-derived in vitro systems. Toxicol Appl Pharmacol. 1998;151(1):152–8.

    Article  CAS  PubMed  Google Scholar 

  7. Richard JL. Some major mycotoxins and their mycotoxicoses–an overview. Int J Food Microbiol. 2007;119(1–2):3–10.

    Article  CAS  PubMed  Google Scholar 

  8. Yang J, Li J, Jiang Y, Duan X, Qu H, Yang B, et al. Natural occurrence, analysis, and prevention of mycotoxins in fruits and their processed products. Crit Rev Food Sci Nutr. 2014;54(1):64–83.

    Article  CAS  PubMed  Google Scholar 

  9. Suarez-Bonnet E, Carvajal M, Mendez-Ramirez I, Castillo-Urueta P, Cortes-Eslava J, Gomez-Arroyo S, et al. Aflatoxin (B1, B2, G1, and G2) contamination in rice of Mexico and Spain, from local sources or imported. J Food Sci. 2013;78(11):T1822–9.

    Article  CAS  PubMed  Google Scholar 

  10. Mukherjee K, Lakshminarasimham AV. Aflatoxin contamination of sorghum seeds during storage under controlled conditions. Zentralblatt fur Bakteriol Int J Med Microbiol. 1995;282(3):237–43.

    Article  CAS  Google Scholar 

  11. Bhatnagar-Mathur P, Sunkara S, Bhatnagar-Panwar M, Waliyar F, Sharma KK. Biotechnological advances for combating Aspergillus flavus and aflatoxin contamination in crops. Plant Sci Int J Exp Plant Biol. 2015;234:119–32.

    CAS  Google Scholar 

  12. Ozkan A, Bindak R, Erkmen O. Aflatoxin B(1) and aflatoxins in ground red chilli pepper after drying. Food Addit Contam Art B Surveill. 2015;8(3):227–33.

    Article  CAS  Google Scholar 

  13. Karaaslan M, Arslangray Y. Aflatoxins B1, B2, G1, and G2 contamination in ground red peppers commercialized in Sanliurfa, Turkey. Environ Monit Assess. 2015;187(4):184.

    Article  PubMed  Google Scholar 

  14. Yogendrarajah P, Jacxsens L, Lachat C, Walpita CN, Kolsteren P, De Saeger S, et al. Public health risk associated with the co-occurrence of mycotoxins in spices consumed in Sri Lanka. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2014;74:240–8.

    Article  CAS  Google Scholar 

  15. Do KH, An TJ, Oh SK, Moon Y. Nation-based occurrence and endogenous biological reduction of mycotoxins in medicinal herbs and spices. Toxins. 2015;7(10):4111–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gundinc U, Filazi A. Detection of aflatoxin M1 concentrations in UHT milk consumed in Turkey markets by ELISA. Pak J Biol Sci PJBS. 2009;12(8):653–6.

    Article  CAS  PubMed  Google Scholar 

  17. Armorini S, Altafini A, Zaghini A, Roncada P. Occurrence of aflatoxin M1 in conventional and organic milk offered for sale in Italy. Mycotoxin Res. 2016;32(4):237–46.

    Article  CAS  PubMed  Google Scholar 

  18. Masoero F, Gallo A, Moschini M, Piva G, Diaz D. Carryover of aflatoxin from feed to milk in dairy cows with low or high somatic cell counts. Anim Int J Anim Biosci. 2007;1(9):1344–50.

    CAS  Google Scholar 

  19. Rodrigues I, Handl J, Binder EM. Mycotoxin occurrence in commodities, feeds and feed ingredients sourced in the Middle East and Africa. Food Addit Contam Part B Surveill. 2011;4(3):168–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hussain Z, Khan MZ, Khan A, Javed I, Saleemi MK, Mahmood S, et al. Residues of aflatoxin B1 in broiler meat: effect of age and dietary aflatoxin B1 levels. Food Chem Toxicol Int J Publ Br Ind Biol Res Assoc. 2010;48(12):3304–7.

    Article  CAS  Google Scholar 

  21. Micco C, Miraglia M, Onori R, Brera C, Mantovani A, Ioppolo A, et al. Long-term administration of low doses of mycotoxins to poultry. 1. Residues of aflatoxin B1 and its metabolites in broilers and laying hens. Food Addit Contam. 1988;5(3):303–8.

    Article  CAS  PubMed  Google Scholar 

  22. Malik A, Ali S, Shahid M, Bhargava R. Occupational exposure to Aspergillus and aflatoxins among food-grain workers in India. Int J Occup Environ Health. 2014;20(3):189–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Njumbe Ediage E, Diana Di Mavungu J, Song S, Sioen I, De Saeger S. Multimycotoxin analysis in urines to assess infant exposure: a case study in Cameroon. Environ Int. 2013;57–58:50–9.

    Article  PubMed  Google Scholar 

  24. Hamid AS, Tesfamariam IG, Zhang Y, Zhang ZG. Aflatoxin B1-induced hepatocellular carcinoma in developing countries: Geographical distribution, mechanism of action and prevention. Oncol Lett. 2013;5(4):1087–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Qureshi H, Hamid SS, Ali SS, Anwar J, Siddiqui AA, Khan NA. Cytotoxic effects of aflatoxin B1 on human brain microvascular endothelial cells of the blood-brain barrier. Med Mycol. 2015;53(4):409–16.

    Article  CAS  PubMed  Google Scholar 

  26. Dohnal V, Wu Q, Kuca K. Metabolism of aflatoxins: key enzymes and interindividual as well as interspecies differences. Arch Toxicol. 2014;88(9):1635–44.

    Article  CAS  PubMed  Google Scholar 

  27. Hanzi M, Shimizu M, Hearn VM, Monod M. A study of the alkaline proteases secreted by different Aspergillus species. Mycoses. 1993;36(11–12):351–6.

    CAS  PubMed  Google Scholar 

  28. Mellon JE, Cotty PJ. Expression of elastinolytic activity among isolates in Aspergillus section flavi. Mycopathologia. 1995;131(2):115–20.

    Article  CAS  PubMed  Google Scholar 

  29. Shieh MT, Brown RL, Whitehead MP, Cary JW, Cotty PJ, Cleveland TE, et al. Molecular genetic evidence for the involvement of a specific polygalacturonase, P2c, in the invasion and spread of Aspergillus flavus in cotton bolls. Appl Environ Microbiol. 1997;63(9):3548–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. St Leger RJ, Joshi L, Roberts DW. Adaptation of proteases and carbohydrates of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches. Microbiology. 1997;143(Pt 6):1983–92.

    Article  CAS  PubMed  Google Scholar 

  31. Sarma PV, Purkayastha S, Madan T, Sarma PU. Expression of an epitopic region of AspfI, an allergen/antigen/cytotoxin of Aspergillus fumigatus. Immunol Lett. 1999;70(3):151–5.

    Article  CAS  PubMed  Google Scholar 

  32. Madan T, Arora N, Sarma PU. Ribonuclease activity dependent cytotoxicity of Asp fl, a major allergen of A. fumigatus. Mol Cell Biochem. 1997;175(1–2):21–7.

    Article  CAS  PubMed  Google Scholar 

  33. Wartenberg D, Lapp K, Jacobsen ID, Dahse HM, Kniemeyer O, Heinekamp T, et al. Secretome analysis of Aspergillus fumigatus reveals Asp-hemolysin as a major secreted protein. Int J Med Microbiol IJMM. 2011;301(7):602–11.

    Article  CAS  PubMed  Google Scholar 

  34. Tamiya H, Ochiai E, Kikuchi K, Yahiro M, Toyotome T, Watanabe A, et al. Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans. J Infect Chemother Off J Jpn Soc Chemother. 2015;21(5):385–91.

    Article  CAS  Google Scholar 

  35. Peromingo B, Rodriguez A, Bernaldez V, Delgado J, Rodriguez M. Effect of temperature and water activity on growth and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus on cured meat model systems. Meat Sci. 2016;122:76–83.

    Article  CAS  PubMed  Google Scholar 

  36. Archer DB, Dyer PS. From genomics to post-genomics in Aspergillus. Curr Opin Microbiol. 2004;7(5):499–504.

    Article  CAS  PubMed  Google Scholar 

  37. Shankar J, Nigam S, Saxena S, Madan T, Sarma PU. Identification and assignment of function to the genes of Aspergillus fumigatus expressed at 37 degrees C. J Eukaryot Microbiol. 2004;51(4):428–32.

    Article  CAS  PubMed  Google Scholar 

  38. Shankar J, Madan T, Basir SF, Sarma PU. Identification and characterization of polyubiquitin gene from cDNA library of aspergillus fumigatus. Indian J Clin Biochem IJCB. 2005;20(1):208–12.

    Article  CAS  PubMed  Google Scholar 

  39. Ehrlich KC, Mack BM. Comparison of expression of secondary metabolite biosynthesis cluster genes in Aspergillus flavus A. parasiticus and A. oryzae. Toxins. 2014;6(6):1916–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Juvvadi PR, Seshime Y, Kitamoto K. Genomics reveals traces of fungal phenylpropanoid-flavonoid metabolic pathway in the f ilamentous fungus Aspergillus oryzae. J Microbiol. 2005;43(6):475–86.

    CAS  PubMed  Google Scholar 

  41. Khaldi N, Collemare J, Lebrun MH, Wolfe KH. Evidence for horizontal transfer of a secondary metabolite gene cluster between fungi. Genome Biol. 2008;9(1):R18.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chiang YM, Oakley BR, Keller NP, Wang CC. Unraveling polyketide synthesis in members of the genus Aspergillus. Appl Microbiol Biotechnol. 2010;86(6):1719–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lin HC, Chooi YH, Dhingra S, Xu W, Calvo AM, Tang Y. The fumagillin biosynthetic gene cluster in Aspergillus fumigatus encodes a cryptic terpene cyclase involved in the formation of beta-trans-bergamotene. J Am Chem Soc. 2013;135(12):4616–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Duran RM, Gregersen S, Smith TD, Bhetariya PJ, Cary JW, Harris-Coward PY, et al. The role of Aspergillus flavus veA in the production of extracellular proteins during growth on starch substrates. Appl Microbiol Biotechnol. 2014;98(11):5081–94.

    Article  CAS  PubMed  Google Scholar 

  45. Cary JW, Han Z, Yin Y, Lohmar JM, Shantappa S, Harris-Coward PY, et al. Transcriptome analysis of Aspergillus flavus reveals veA-dependent regulation of secondary metabolite gene clusters, including the novel aflavarin cluster. Eukaryot Cell. 2015;14(10):983–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Duran RM, Cary JW, Calvo AM. Production of cyclopiazonic acid, aflatrem, and aflatoxin by Aspergillus flavus is regulated by veA, a gene necessary for sclerotial formation. Appl Microbiol Biotechnol. 2007;73(5):1158–68.

    Article  CAS  PubMed  Google Scholar 

  47. Bhatnagar D, Ehrlich KC, Cleveland TE. Molecular genetic analysis and regulation of aflatoxin biosynthesis. Appl Microbiol Biotechnol. 2003;61(2):83–93.

    Article  CAS  PubMed  Google Scholar 

  48. Yu J, Bhatnagar D, Ehrlich KC. Aflatoxin biosynthesis. Revista iberoam de Micol. 2002;19(4):191–200.

    Google Scholar 

  49. Yu J, Chang PK, Ehrlich KC, Cary JW, Bhatnagar D, Cleveland TE, et al. Clustered pathway genes in aflatoxin biosynthesis. Appl Environ Microbiol. 2004;70(3):1253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Keller NP, Turner G, Bennett JW. Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol. 2005;3(12):937–47.

    Article  CAS  PubMed  Google Scholar 

  51. Kale SP, Milde L, Trapp MK, Frisvad JC, Keller NP, Bok JW. Requirement of LaeA for secondary metabolism and sclerotial production in Aspergillus flavus. Fungal Genet Biol FG B. 2008;45(10):1422–9.

    Article  CAS  PubMed  Google Scholar 

  52. Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, et al. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS Pathog. 2007;3(4):e50.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Baidya S, Duran RM, Lohmar JM, Harris-Coward PY, Cary JW, Hong SY, et al. VeA is associated with the response to oxidative stress in the aflatoxin producer Aspergillus flavus. Eukaryot Cell. 2014;13(8):1095–103.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Palmer JM, Theisen JM, Duran RM, Grayburn WS, Calvo AM, Keller NP. Secondary metabolism and development is mediated by LlmF control of VeA subcellular localization in Aspergillus nidulans. PLoS Genet. 2013;9(1):e1003193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chang PK, Scharfenstein LL, Li P, Ehrlich KC. Aspergillus flavus VelB acts distinctly from VeA in conidiation and may coordinate with FluG to modulate sclerotial production. Fungal Genet Biol FG B. 2013;58–59:71–9.

    Article  PubMed  Google Scholar 

  56. Calvo AM, Bok J, Brooks W, Keller NP. veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol. 2004;70(8):4733–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Amaike S, Keller NP. Distinct roles for VeA and LaeA in development and pathogenesis of Aspergillus flavus. Eukaryot Cell. 2009;8(7):1051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, et al. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science. 2008;320(5882):1504–6.

    Article  CAS  PubMed  Google Scholar 

  59. Feng GH, Leonard TJ. Characterization of the polyketide synthase gene (pksL1) required for aflatoxin biosynthesis in Aspergillus parasiticus. J Bacteriol. 1995;177(21):6246–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mahanti N, Bhatnagar D, Cary JW, Joubran J, Linz JE. Structure and function of fas-1A, a gene encoding a putative fatty acid synthetase directly involved in aflatoxin biosynthesis in Aspergillus parasiticus. Appl Environ Microbiol. 1996;62(1):191–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rokas A, Payne G, Fedorova ND, Baker SE, Machida M, Yu J, et al. What can comparative genomics tell us about species concepts in the genus Aspergillus? Stud Mycol. 2007;59:11–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bhetariya PJ, Prajapati M, Bhaduri A, Mandal RS, Varma A, Madan T, et al. Phylogenetic and Structural Analysis of Polyketide Synthases in Aspergilli. Evol Bioinform Online. 2016;12:109–19.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yin Y, Lou T, Yan L, Michailides TJ, Ma Z. Molecular characterization of toxigenic and atoxigenic Aspergillus flavus isolates, collected from peanut fields in China. J Appl Microbiol. 2009;107(6):1857–65.

    Article  CAS  PubMed  Google Scholar 

  64. Ehrlich KC, Montalbano BG, Cotty PJ. Analysis of single nucleotide polymorphisms in three genes shows evidence for genetic isolation of certain Aspergillus flavus vegetative compatibility groups. FEMS Microbiol Lett. 2007;268(2):231–6.

    Article  CAS  PubMed  Google Scholar 

  65. Criseo G, Bagnara A, Bisignano G. Differentiation of aflatoxin-producing and non-producing strains of Aspergillus flavus group. Lett Appl Microbiol. 2001;33(4):291–5.

    Article  CAS  PubMed  Google Scholar 

  66. Atoui A, Dao HP, Mathieu F, Lebrihi A. Amplification and diversity analysis of ketosynthase domains of putative polyketide synthase genes in Aspergillus ochraceus and Aspergillus carbonarius producers of ochratoxin A. Mol Nutr Food Res. 2006;50(6):488–93.

    Article  CAS  PubMed  Google Scholar 

  67. Chang PK, Horn BW, Dorner JW. Sequence breakpoints in the aflatoxin biosynthesis gene cluster and flanking regions in nonaflatoxigenic Aspergillus flavus isolates. Fungal Genet Biol FG B. 2005;42(11):914–23.

    Article  CAS  PubMed  Google Scholar 

  68. Ehrlich KC, Cotty PJ. An isolate of Aspergillus flavus used to reduce aflatoxin contamination in cottonseed has a defective polyketide synthase gene. Appl Microbiol Biotechnol. 2004;65(4):473–8.

    Article  CAS  PubMed  Google Scholar 

  69. Atehnkeng J, Ojiambo PS, Ikotun T, Sikora RA, Cotty PJ, Bandyopadhyay R. Evaluation of atoxigenic isolates of Aspergillus flavus as potential biocontrol agents for aflatoxin in maize. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2008;25(10):1264–71.

    Article  CAS  PubMed  Google Scholar 

  70. Cotty PJ, Bhatnagar D. Variability among atoxigenic Aspergillus flavus strains in ability to prevent aflatoxin contamination and production of aflatoxin biosynthetic pathway enzymes. Appl Environ Microbiol. 1994;60(7):2248–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Grubisha LC, Cotty PJ. Genetic analysis of the aspergillus flavus vegetative compatibility group to which a biological control agent that limits aflatoxin contamination in U.S. crops belongs. Appl Environ Microbiol. 2015;81(17):5889–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chang PK, Abbas HK, Weaver MA, Ehrlich KC, Scharfenstein LL, Cotty PJ. Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations. Int J Food Microbiol. 2012;154(3):192–6.

    Article  CAS  PubMed  Google Scholar 

  73. Ortega-Beltran A, Grubisha LC, Callicott KA, Cotty PJ. The vegetative compatibility group to which the US biocontrol agent Aspergillus flavus AF36 belongs is also endemic to Mexico. J Appl Microbiol. 2016;120(4):986–98.

    Article  CAS  PubMed  Google Scholar 

  74. King ED, Bassi AB Jr, Ross DC, Druebbisch B. An industry perspective on the use of “atoxigenic” strains of Aspergillus flavus as biological control agents and the significance of cyclopiazonic acid. Toxin Rev. 2011;30(2–3):33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Alaniz Zanon MS, Barros GG, Chulze SN. Non-aflatoxigenic Aspergillus flavus as potential biocontrol agents to reduce aflatoxin contamination in peanuts harvested in Northern Argentina. Int J Food Microbiol. 2016;231:63–8.

    Article  CAS  PubMed  Google Scholar 

  76. D’Souza DH, Brackett RE. Aflatoxin B1 degradation by flavobacterium aurantiacum in the presence of reducing conditions and seryl and sulfhydryl group inhibitors. J Food Prot. 2001;64(2):268–71.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Council of Scientific and Industrial Research (CSIR) and the laboratory facilities provided by the Division of Plant Pathology, of Indian Agricultural Research Institute (IARI), New Delhi. Constant support by Dr. Rashmi Agarwal, Head, Division of Plant Pathology, IARI is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha P. Sarma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, U.P., Bhetaria, P.J., Devi, P. et al. Aflatoxins: Implications on Health. Ind J Clin Biochem 32, 124–133 (2017). https://doi.org/10.1007/s12291-017-0649-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12291-017-0649-2

Keywords

Navigation