Skip to main content
Log in

Leaf Development, Metamorphic Heteroblasty and Heterophylly in Berberis s. l. (Berberidaceae)

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Shoot development of temperate and tropical members of Berberis s. l. was examined in order to assess: (1) the homology of the spines along the long shoots and the foliage leaves that form on the short shoots; (2) the occurrence of heterophylly and/or heteroblasty in the genus; and (3) the structural correspondence between cataphylls, spines, and foliage leaves. The 1-5-armed spines have been interpreted as modified compound leaves lacking stipules, as a modified lamina (central spine) with stipules (lateral spines), or less often, as transformed branches, or as epidermal outgrowths. On the other hand, the foliage leaves of the short shoots have been interpreted as leaflets of palmately compound leaves. Our results indicate that there are three distinct leaf types per node: (1) Leaves modified in spines spirally arranged in long shoots; (2) foliage, expanded leaves densely arranged in short shoots; and (3) cataphylls protecting axillary buds. The spines are leaf homologs with a clear distinction between the leaf base with stipules, and a laminar portion modified into the 1-5-armed spine; the lateral spines are not stipules as they arise from the marginal meristem of the laminar portion, and not from the leaf base. The foliage leaves also have stipules flanking the leaf base. Both spiny leaves and foliage leaves develop an articulation between the base and the laminar portion. Cataphylls of the short shoots of Berberis s. str. and those of the reproductive short shoots of Mahonia correspond to the entire leaf base, but those of the renewal (vegetative) shoots of Mahonia are spiny and have an odd vestigial pinnately compound lamina. Heterochrony due to ontogenetic truncation caused by the formation of the terminal inflorescence at the apex of the short shoots could be responsible for the lack of petiole/lamina differentiation in the foliage leaves. The spiny long-shoot/foliose short-shoot system of branching in Berberis s. str. appears to be genetically and phylogenetically fixed and not environment-dependent. This represents a clear example of metamorphic heteroblasty sensu Zotz et al. (Botanical Review 77:109–151, 2011) with further occurrence of heterophylly along the short shoots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Literature Cited

  • Ahrendt, L. W. A. 1961. Berberis and Mahonia, a taxonomic revision. Botanical Journal of the Linnean Society 57: 1–410.

    Article  Google Scholar 

  • Allsopp, A. 1965. Heteroblastic development in cormophytes. Pp 1172–1221. In: W. Ruhland (ed). Handbuch der Pflanzenphysiologie XV/1. Springer, Heidelberg.

    Google Scholar 

  • Ashby, E. 1948. Studies in the morphogenesis of leaves. I. An essay on leaf shape. New Phytologist 47: 153–176.

    Article  Google Scholar 

  • Bharathan, G., T. E. Goliber, C. Moore, S. Kessler, T. Pham & N. R. Sinha. 2002. Homologies in leaf form inferred from KNOXI gene expression during development. Science 296: 1858–1860.

    Article  PubMed  CAS  Google Scholar 

  • Beck, P. V. 1927. Comparative anatomy of certain hybrid shrubs and their parents. The University of Kansas Science Bulletin 16: 367–396.

    Google Scholar 

  • Bell, A. D. 1991. Plant Form. An illustrated guide to flowering plant morphology. Oxford University Press.

  • ———. 2008. Plant Form. An illustrated guide to flowering plant morphology. Second edition. Timber Press.

  • Berger, Y., S. Harpaz-Saad, A. Brand, H. Melnik, N. Sirding, J. P. Alvarez, M. Zinder, A. Samach, Y. Eshed & N. Ori. 2009. The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136: 823–832.

    Article  PubMed  CAS  Google Scholar 

  • Blein, T., A. Pulido, A. Vialette-Guiraud, K. Nikovics, H. Morin, A. Hay, I. E. Johansen, M. Tsiantis & P. Laufs. 2008. A conserved molecular framework for compound leaf development. Science 322: 1835–1839.

    Article  PubMed  CAS  Google Scholar 

  • Brodribb, T. & R. S. Hill. 1993. A physiological comparison of leaves and phyllodes in Acacia melanoxylon. Australian Journal of Botany 41: 293–305.

    Article  Google Scholar 

  • Burns, K. C. & J. W. Dawson. 2006. A morphological comparison of leaf heteroblasty between New Caledonia and New Zealand. New Zealand Journal of Botany 44: 387–396.

    Article  Google Scholar 

  • ——— & ———. 2009. Heteroblasty on Chatham Island: A comparison with New Zealand and New Caledonia. New Zealand Journal of Ecology 33: 156–163.

    Google Scholar 

  • Byrne, M. E., R. Barley, M. Curtis, J. M. Arroyo, M. Dunham, A. Hudson & R. A. Martienssen. 2000. ASYMMETRIC LEAVES1 mediates leaf patterning and stem cell function in Arabidopsis. Nature 104: 967–971.

    Google Scholar 

  • ———, J. Simorowski & R. A. Martienssen. 2002. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 129: 1957–1965.

    PubMed  CAS  Google Scholar 

  • Camargo, L. A. 1960. A critical taxonomic study of 15 colombian species of Berberis. M. Sc. Thesis, Catholic University of America, Washington, D. C.

  • ———. 1966. Especies nuevas del género Berberis. Caldasia 9:313–351.

    Google Scholar 

  • ———. 1981. Especies nuevas del género Berberis. II. Caldasia 13:203–222.

    Google Scholar 

  • ———. 1983. Especies nuevas del género Berberis. III. Caldasia 13:675–691.

    Google Scholar 

  • ———. 1991. Especies nuevas del género Berberis. IV. Caldasia 16:419–424.

    Google Scholar 

  • Cameron, R. J. 1970. Light intensity and growth of Eucalyptus seedlings. I. Ontogenetic variation in E. fastigiata. Australian Journal of Botany 18: 29–43.

    Article  Google Scholar 

  • Champagne, C. & N. Sinha. 2004. Compound leaves: equal to the sum of their parts? Development 131: 4401–4412.

    Article  PubMed  CAS  Google Scholar 

  • Champagne, C. E., T. E. Goliber, M. F. Wojciechowski, R. W. Mei, B. T. Townsley, K. Wang, M. M. Paz, R. Geeta & N. R. Sinha. 2007. Compound leaf development and evolution in the legumes. The Plant Cell 19: 3369–3378.

  • Croizat, L. 1960. Principia Botanica, or beginnings of botany. N. V. Drukkerij Salland Deventer, Netherlands.

    Google Scholar 

  • Cronk, Q. C. B. 2009. The molecular organography of plants. Oxford University Press, Oxford.

    Book  Google Scholar 

  • Cronquist, A. 1981. An integrated system of classification of flowering plants. Columbia University Press, New York.

  • Curtis, J. D. & N. L. Lersten. 1978. Heterophylly in Populus grandidentata (Salicaceae) with emphasis on resin glands and extrafloral nectarines. American Journal of Botany 65: 1003–1010.

    Article  Google Scholar 

  • Darrow, H. E., P. Bannister, D. J. Burritt & P. E. Jameson. 2002. Are juvenile forms of New Zealand heteroblastic trees more resistant to water loss than their mature counterparts? New Zealand Journal of Botany 40: 313–325.

    Article  Google Scholar 

  • Day, J. D. 1998. Light conditions and the evolution of heteroblasty (and the divaricate form) in New Zealand. New Zealand Journal of Ecology 22: 43–54.

    Google Scholar 

  • De Witt, T. J., A. Sih, & D. S. Wilson. 1998. Costs and limits of phenotypic plasticity. Trends in Ecology and Evolution 13: 77–81.

  • Diggle, P. K. 1999. Heteroblasty and the evolution of flowering phenologies. International Journal of Plant Sciences 160(S6): S123–S134.

    Article  PubMed  Google Scholar 

  • Eckenwalder, J. E. 1980. Foliar heteromorphism in Populus (Salicaceae), a source of confusion in the taxonomy of Tertiary leaf remains. Systematic Botany 5: 366–383.

    Article  Google Scholar 

  • Efroni, I., Y. Eshed & E. Lifschitz. 2010. Morphogenesis of simple and compound leaves: a critical review. The Plant Cell 22: 1019–1032.

    Article  PubMed  CAS  Google Scholar 

  • Ehrenfeld, J. G. 1997. Invasion of deciduous forest preserves in the New York metropolitan region by Japanese berberry (Berberis thunbergii DC.). Journal of the Torrey Botanical Society 124: 210–215.

    Article  Google Scholar 

  • Emery, J. F., S. K. Floyd, J. Alvarez, Y. Eshed, N. P. Hawker, A. Izhaki, S. F. Baum & J. L. Bowman. 2003. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Current Biology 13: 1768–1774.

    Article  PubMed  CAS  Google Scholar 

  • Ernst, W. R. 1964. The genera of Berberidaceae, Lardizabalaceae and Menispermaceae in the southeastern United States. Journal of the Arnold Arboretum 45: 1–35.

    Google Scholar 

  • Eshed, Y., S. F. Baum, J. V. Perea & J. L. Bowman. 2001. Establishment of polarity in lateral organs of plants. Current Biology 11: 1251–1260.

    Article  PubMed  CAS  Google Scholar 

  • ———, A. Izhaki, S. F. Baum, S. K. Floyd & J. L. Bowman. 2004. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131: 2997–3006.

    Article  PubMed  CAS  Google Scholar 

  • Fedde, F. 1902. Versuch einer Monographie der Gattung Mahonia. Botanische Jahrbücher 31: 30–133.

    Google Scholar 

  • Foster, A. 1928. Salient features of the problem of bud scale morphology. Biological Reviews 3: 123–164.

    Article  Google Scholar 

  • Gamage, H. K. & L. Jesson. 2007. Leaf heteroblasty is not an adaptation to shade: seedling anatomical and physiological responses to light. New Zealand Journal of Ecology 31: 245–254.

    Google Scholar 

  • Gardner, S., A. Drinnan, E. Newbigin & P. Ladiges. 2008. Leaf ontogeny and morphology in Acacia Mill. (Mimosaceae). Muelleria 26: 43–50.

    Google Scholar 

  • Gerrath, J. M. & C. R. Lacroix. 1997. Heteroblastic sequence and leaf development in Leea guineensis. International Journal of Plant Sciences 158: 747–756.

    Article  Google Scholar 

  • Givnish, T. J., K. J. Systma, J. F. Smith & W. J. Hahn. 1994. Thorn-like prickles and heterophylly in Cyanea—Adaptations to extinct avian browsers on Hawaii. Proceedings of the National Academy of Sciences, USA 91: 2810–2814.

    Article  CAS  Google Scholar 

  • Glück, H. 1919. Pp 696. Blatt- und blütenmorphologische Studien. Eine morphologische Untersuchung über die Stipulargebilde, über die Intravaginalpapillen, über die Blattscheide und über die Bewertung der Blütenblattgebilde. Verlag von Gustav Fischer, Jena.

    Google Scholar 

  • Goebel, K. 1891. Pp 1–50. Die Vegetation der venezuelanischen Paramos. Pflanzenbiologische Schilderungen, Vol. 2. N. G. Elwert’sche Verlagsbuchhandlung, Marburg.

    Google Scholar 

  • ———. 1900–1905. Organography of plants. Two volumes. Oxford University Press, Oxford.

  • von Goethe, J. W. 1790. Versuch, die Metamorphose der Pflanzen zu erklären. Carl Wilhelm Ettinger, Gotha.

    Google Scholar 

  • Green, S., T. L. Green & Y. Heslop-Harrison. 1979. Seasonal heterophylly and leaf gland features in Triphyophyllum (Dioncophyllaceae), a new carnivorous plant genus. Botanical Journal of the Linnean Society 78: 99–116.

    Article  Google Scholar 

  • Groom, P. K., B. B. Lamont & L. Kupsky. 1994. Contrasting morphology and ecophysiology of co-ocurring broad and terete leaves in Hakea trifurcata (Proteaceae). Australian Journal of Botany 42: 307–320.

    Google Scholar 

  • Hallé, F., R. A. A. Oldeman & P. B. Tomlinson. 1978. Tropical trees and forests. An architectural analysis. Springer, New York.

    Google Scholar 

  • Hansen, D. H. 1996. Establishment and persistence characteristics in juvenile leaves and phyllodes of Acacia koa (Leguminosae) in Hawaii. International Journal of Plant Sciences 157: 123–128.

    Article  Google Scholar 

  • Hareven, D., T. Gutfinger, A. Parnis, Y. Eshed & E. Lifschitz. 1996. The making of a compound leaf: Genetic manipulation of leaf architecture in tomato. Cell 84: 735–744.

    Article  PubMed  CAS  Google Scholar 

  • Harvey-Gibson, R. J. & E. Horsman. 1919. The anatomy of stem of the Berberidaceae. Transactions of the Royal Society of Edinburgh 52: 501–515.

    Google Scholar 

  • Hay, A. & M. Tsiantis. 2010. KNOX genes: Versatile regulators of plant development and diversity. Development 137: 3153–3165.

    Article  PubMed  CAS  Google Scholar 

  • Hofer, J., L. Turner, R. Hellens, M. Ambrose, P. Mathews, A. Michael & N. Ellis. 1997. UNIFOLIATA regulates leaf and flower morphogenesis in pea. Current Biology 7: 581–587.

    Article  PubMed  CAS  Google Scholar 

  • Holm, T. 1899. Podophyllum peltatum: A morphological study. Botanical Gazette 27: 419–433.

    Article  Google Scholar 

  • Jaya, E., D. S. Kubien, P. E. Jameson & J. Clemens. 2010. Vegetative phase change and photosynthesis in Eucalyptus occidentalis: architectural simplification prolongs juvenile traits. Tree Physiology 30: 393–403.

    Article  PubMed  Google Scholar 

  • Jones, C. S. 1993. Heterochrony and heteroblastic leaf development in two subspecies of Cucurbita argyrosperma (Cucurbitaceae). American Journal of Botany 80: 778–795.

    Article  Google Scholar 

  • ———. 1995. Does shade prolong juvenile development? A morphological analysis of leaf shape changes in Cucurbita argyrosperma subsp. sororia (Cucurbitaceae). American Journal of Botany 82:346–359.

    Article  Google Scholar 

  • ———. 1999. An essay on juvenility, phase change, and heteroblasty in seed plants. International Journal of Plant Sciences 160: S105–S111.

    Article  PubMed  Google Scholar 

  • ———. 2001. The functional correlates of heteroblastic variation in leaves: changes in form and ecophysiology with whole plant ontogeny. Boletín de la Sociedad Argentina de Botánica 36:171–184.

    Google Scholar 

  • ———, & M. A. Watson. 2001. Heteroblasty and preformation in mayapple, Podophyllum peltatum (Berberidaceae): Developmental flexibility and morphological constraint. American Journal of Botany 88: 1340–1358.

    Article  PubMed  CAS  Google Scholar 

  • Katayama, N., S. Koi & M. Kato. 2010. Expression of SHOOT MERISTEMLESS, WUSHEL, and ASYMMETRIC LEAVES1 homologs in the shoots of Podostemaceae: implications for the evolution of novel shoot organogenesis. The Plant Cell 22: 2131–2140.

    Article  PubMed  CAS  Google Scholar 

  • Kato, M. & H. Setoguchi. 1998. An rbcL-based phylogeny and heteroblastic leaf morphology of Matoniaceae. Systematic Botany 23: 391–400.

    Article  Google Scholar 

  • Kerstetter, R. A., K. Bollman, R. A. Tayler, K. Bomblies & R. S. Poethig. 2001. KANADI regulates organ polarity in Arabidopsis. Nature 411: 706–709.

    Article  PubMed  CAS  Google Scholar 

  • Kidner, C. A. & M. C. P. Timmermans. 2010. Signaling sides: adaxial-abaxial patterning in leaves. In: M. C. P. Timmermans (ed). Plant Development. Elsevier, San Diego.

    Google Scholar 

  • Kim, M., S. McCormick, M. C. P. Timmermans & N. Sinha. 2003. The expression domain of PHANTASTICA determines leaflet placement in compound leaves. Nature 424: 438–443.

    Article  PubMed  CAS  Google Scholar 

  • Kunze, H. 1986. Studien zur Blattmetamorphose. Beiträge zur Biologie der Pflanzen 61: 49–77.

    Google Scholar 

  • Landrum, L. R. 1999. Revision of Berberis (Berberidaceae) in Chile and adjacent Southern Argentina. Annals of the Missouri Botanical Garden 86: 793–834.

    Article  Google Scholar 

  • Lee, D. W. & J. H. Richards. 1991. Heteroblastic development in vines. Pp 205–243. In: F. E. Putz & H. A. Mooney (eds). The Biology of Vines. Cambridge University Press, Cambridge.

    Google Scholar 

  • Lindley, J. 1831. An introduction to the natural system of botany; or, a systematic view of the organization, natural affinities, and geographical distribution of the whole vegetable kingdom. G. & C. & H. Carvill, New York.

    Book  Google Scholar 

  • Long, J. A., E. I. Moan, J. I. Medford & M. K. Barton. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379: 66–69.

    Article  PubMed  CAS  Google Scholar 

  • Mabberley, D. J. 2008. The plant book. Cambridge University Press, Cambridge.

    Google Scholar 

  • Mallory, A. C., B. J. Reinhart, M. W. Jones-Rhoades, G. Tang, P. D. Zamore, M. K. Barton & D. P. Bartel. 2004. MicroRNA conrol of PHABULOSA in leaf development: importance of pairing to the microRNA 5’ region. EMBO J 23: 3356–3364.

    Article  PubMed  CAS  Google Scholar 

  • Masters, M. T. 1869. Vegetable teratology. Ray Society, R. Hadwicke, London.

    Book  Google Scholar 

  • McAlpine, K. G. & L. K. Jesson. 2008. Linking seed dispersal, germination and seedling recruitment in the invasive species Berberis darwinii (Darwin’s barberry). Plant Ecology 197: 119–129.

    Article  Google Scholar 

  • McConnell, J. R. & M. K. Barton. 1998. Leaf polarity and meristem formation in Arabidopsis. Development 125: 2935–2942.

    PubMed  CAS  Google Scholar 

  • ———, J. Emery, Y. Eshed, N. Bao, J. L. Bowman & M. K. Barton. 2001. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411: 709–713.

    Article  PubMed  CAS  Google Scholar 

  • McGlone, M. S. & C. J. Webb. 1981. Selective forces influencing the evolution of divaricating plants. New Zealand Journal of Ecology 4: 20–28.

    Google Scholar 

  • McHale, N. A. & R. E. Koning. 2004. MicroRNA- Directed cleavage of Nicotiana sylvestris PHAVOLUTA mRNA regulates the vascular cambium and structure of apical meristems. The Plant Cell 16: 1730–1740.

    Article  PubMed  CAS  Google Scholar 

  • McLellan, T. 1993. The roles of heterochrony and heteroblasty in the diversification of leaf shapes in Begonia dregei (Begoniaceae). American Journal of Botany 80: 796–804.

    Article  Google Scholar 

  • Meacham, C. A. 1980. Phylogeny of the Berberidaceae with an evaluation of classifications. Systematic Botany 5: 149–172.

    Article  Google Scholar 

  • Merrill, E. K. 1986. Heteroblastic seedlings of green ash. I. Predictability of leaf form and primordial length. Canadian Journal of Botany 64: 2645–2649.

    Article  Google Scholar 

  • Minorsky, P. V. 2003. The hot and the classic. Plant Physiology 133: 1671–1672.

    Article  CAS  Google Scholar 

  • Nakata, M., N. Matsumoto, R. Tsugeki, E. Rikirsch, T. Laux & K. Okada. 2012. Roles of the middle domain-specific WUSCHEL-RELATED HOMEOBOX genes in early development of leaves in Arabidopsis. The Plant Cell 24: 519–535.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, A., M. Tamaoki & M. Matsuoka. 1998. Expression pattern of KN-1 type tobacco homeobox genes. Plant Cell and Physiology 39: S60.

    Article  Google Scholar 

  • Ori, N., Y. Eshed, G. Chuck, J. L. Bowman & S. Hake. 2000. Mechanisms that control Knox gene expression in Arabidopsis shoot. Development 125: 2935–2942.

    Google Scholar 

  • Pabón-Mora, N. 2012. Functional evolution of the APETALA1/FRUITFULL gene lineage. PhD. Dissertation, The City University of New York, NY.

  • Poethig, R. S. 2003. Phase change and the regulation of developmental timing in plants. Science 301: 334–336.

    Article  PubMed  CAS  Google Scholar 

  • Prigge, M. J., D. Otsuga, J. M. Alonso, J. R. Ecker, G. N. Drew & S. E. Clark. 2005. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. The Plant Cell 17: 61–76.

    Article  PubMed  CAS  Google Scholar 

  • Pulido, A. & P. Laufs. 2010. Co-ordination of developmental processes by small RNAs during leaf development. Journal of Experimental Botany 61: 1277–1291.

    Article  PubMed  CAS  Google Scholar 

  • Ramírez, J. L. & S. R. S. Cevallos-Ferriz. 2000. Leaves of Berberidaceae (Berberis and Mahonia) from Oligocene sediments, near Tepexi de Rodríguez, Puebla. Review of Palaeobotany and Palynology 110: 247–257.

    Article  PubMed  Google Scholar 

  • Rauh, W. 1950. Morphologie der Nutzpflanzen. Quelle & Meyer, Heidelberg.

    Google Scholar 

  • Ray, T. S. 1987. Cyclic heterophylly in Syngonium (Araceae). American Journal of Botany 74: 16–26.

    Article  Google Scholar 

  • ———. 1990. Metamorphosis in the Araceae. American Journal of Botany 77:1599–1609.

    Article  Google Scholar 

  • Reinhart, B. J., E. G. Weinstein, M. W. Rhoades, B. Bartel & D. P. Bartel. 2002. MicroRNAs in plants. Genes and Development 16: 1616–1626.

    Article  PubMed  CAS  Google Scholar 

  • Rhoades, M. W., B. J. Reinhart, L. P. Lim, C. B. Burge, B. Bartel & D. P. Bartel. 2002. Prediction of plant microRNA targets. Cell 110: 513–520.

    Article  PubMed  CAS  Google Scholar 

  • Sawa, S., K. Watanabe, K. Goto, E. Kanaya, E. H. Morita & K. Okada. 1999. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with zinc finger and HMG-related domains. Genes and Development 13: 1079–1088.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, E. 1928. Untersuchungen über Berberidaceen. Beihefte zum Botanischen Centralblatt 45: 329–396.

    Google Scholar 

  • Schneeberger, R., M. Tsiantis, M. Freeling & J. A. Langdale. 1998. The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development 125: 2857–2865.

    PubMed  CAS  Google Scholar 

  • Schneider, C. K. 1905. Die Gattung Berberis (Euberberis). Vorarbeiten für eine Monographie. Bulletin del Herbier Boissier, ser. 2, 5: 33–48, 133–148, 391–403, 449–464, 655–670, 800–831.

  • ———. 1908. Weitere Beitrage zur Kenntnis der Gattung Berberis (Euberberis). Bulletin del Herbier Boissier, ser. 2, 8: 192–204, 258–266.

  • Siegfried, K. R., Y. Eshed, S. F. Baum, D. Otsuga, G. N. Drews & J. L. Bowman. 1999. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126: 4117–4128.

    PubMed  CAS  Google Scholar 

  • Sliander, J. A. & D. M. Klepeis. 1999. The invasion ecology of Japanese barberry (Berberis thunbergii) in the New England landscape. Biological Invasions 1: 189–201.

    Article  Google Scholar 

  • Smith, L. G., Greene, B., Veit, B. and Hake, S. 1992. A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116: 21–30.

  • Sugiyama, M. & N. Hara. 1988. Comparative study on early ontogeny of coumpound leaves in Lardizabalaceae. American Journal of Botany 75: 1598–1605.

  • Takhtajan, A. L. 1997. Diversity and classification of flowering plants. Columbia University Press, New York.

  • Taylor, T. N., E. L. Taylor & M. Krings. 2009. Paleobotany, the biology and evolution of fossil plants. Academic Press, New York.

    Google Scholar 

  • Timmermans, M. C. P., A. Hudson, P. W. Becraft & T. Nelson. 1999. ROUGH SHEATH2: a Myb protein that represses Knox homeobox genes in maize lateral organ primordia. Science 284: 151–153.

    Article  PubMed  CAS  Google Scholar 

  • Tischler, G. 1902. Die Berberidaceen und Podophyllaceen. Versuch einer morphologisch-biologischen Monographie. Botanische Jahrbücher 31: 596–727.

    Google Scholar 

  • Troll, W. 19371943. Vergleichende Morphologie der höheren Pflanzen. Band 1 (1–3). Gebrüder Borntraeger, Berlin.

  • ———. 1954. Praktische Einführung in die Pflanzenmorphologie. Gustav Fischer, Jena.

    Google Scholar 

  • ———. 1959. Allgemeine Botanik. Ferdinand Enke, Stuttgart.

    Google Scholar 

  • ———. 1969. Die Infloreszenzen. Typologie und Stellung im Aufbau des Vegetationskörpers. Vol. 2, part 1. Gustav Fischer, Stuttgart.

    Google Scholar 

  • Tsiantis, M., R. Schneeberger, J. F. Golz, M. Freeling & J. A. Langdale. 1999. The maize rough sheath2 gene and leaf development in monocot and dicot plants. Science 284: 154–156.

    Article  PubMed  CAS  Google Scholar 

  • Tsukaya, H. 2006. Mechanism of leaf-shape determination. Annual Review in Plant Biology 57: 477–496.

    Article  CAS  Google Scholar 

  • Venglat, S. P., T. Dumonceaux, K. Rozwadowki, L. Parnell, V. Babic, W. Keller, R. Martienssen, G. Selvaraj & R. Datla. 2002. The homeobox gene BREVIPEDICELLUS is a key regulator of inflorescence architecture in Arabidopsis. Proceedings of the National Academy of Sciences USA 99: 4730–4735.

    Article  CAS  Google Scholar 

  • Vollbrecht, E., L. Reiser & S. Hake. 2000. Shoot meristem size is dependent on inbred background and presence of the of the maize homeobox gene, knotted1. Development 127: 3161–3172.

    PubMed  CAS  Google Scholar 

  • Waites, R., H. R. N. Selvadurai, I. R. Oliver & A. Hudson. 1998. The phantastica gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell 93: 779–789.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., A.-M. Lu, Y. Ren, M. E. Endress & Z.-D. Chen. 2009. Phylogeny and classification of Ranunculales: Evidence from four molecular loci and morphological data. Perspectives in Plant Ecology, Evolution and Systematics 11: 81–110.

    Article  Google Scholar 

  • Wiltshire, R. J. E., J. B. Reid & B. M. Potts. 1998. Genetic control of reproductive and vegetative phase change in the Eucalyptus risdonii-E. tenuiramis complex. Australian Journal of Botany 46: 45–63.

    Article  Google Scholar 

  • Winn, A. A. 1996. The contribution of programmed developmental change and phenotypic plasticity to within-individual variation in leaf traits in Dicerandra linearifolia. Journal of Evolutionary Biology 9: 737–752.

    Article  Google Scholar 

  • ———.1999. The functional significance and fitness consequences of the heterophylly. International Journal of Plant Sciences 160(6 Suppl.): S113–S121.

    Article  PubMed  Google Scholar 

  • Xu, C.-Y., K. L. Griffin & W. S. F. Schuster. 2007. Leaf phenology and seasonal variation of photosynthesis of invasive Berberis thunbergii (Japanese barberry) and two co-occurring native understory shrubs in a northeastern United States deciduous forest. Oecologia 154: 11–21.

    Article  PubMed  Google Scholar 

  • Zgurski, J. M., R. Sharma, D. A. Bolokosi & E. A. Schultz. 2005. Asymmetric auxin response precedes asymmetric growth and differentiation of asymmetric leaf 1 and asymmetric leaf 2 Arabidopsis leaves. The Plant Cell 17: 77–91.

    Article  PubMed  CAS  Google Scholar 

  • Zotz, G., K. Wilhelm & A. Becker. 2011. Heteroblasty—A review. Botanical Review 77: 109–151.

    Article  Google Scholar 

Download references

Acknowledgments

We thank D. W. Stevenson (The New York Botanical Garden) for inviting us to participate in the present issue of Botanical Review. We thank Barbara Ambrose for comments on the manuscript. We thank the Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, and the staff of the Structural Laboratory, The New York Botanical Garden, for logistic support. We also thank J. Hennig, D. Basile, and M. Baxter (Lehmann College, City University of New York), for access to living collections and microscopy facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Pabón-Mora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pabón-Mora, N., González, F. Leaf Development, Metamorphic Heteroblasty and Heterophylly in Berberis s. l. (Berberidaceae). Bot. Rev. 78, 463–489 (2012). https://doi.org/10.1007/s12229-012-9107-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12229-012-9107-2

Keywords

Navigation