Skip to main content
Log in

Anterior cruciate ligament assessment using arthrometry and stress imaging

  • ACL Update: Objective Measures on Knee Instability (V Musahl, Section Editor)
  • Published:
Current Reviews in Musculoskeletal Medicine Aims and scope Submit manuscript

Abstract

Arthrometry and stress imaging are useful clinical tools for the objective assessment of anterior cruciate ligament (ACL) integrity. They are most frequently used for the diagnosis of a complete ACL tear when other workup is equivocal, in conjunction with history and clinical exam findings. Other applications include the diagnosis of partial ACL tears, injury prognosis, and post-operative monitoring. However, further studies are needed to validate these uses. Many different devices and techniques exist for objective examination, which have been compared in recent literature. Reliability and validity measures of these methods vary, and often depend upon examiner familiarity and skill. The KT series of devices is the current gold standard for arthrometry, although the newer robotic GNRB device shows promising early results. Newer methods of data interpretation have been developed for stress imaging, and portable technology may impact this field further.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. James EW, Williams BT, LaPrade RF. Stress radiography for the diagnosis of knee ligament injuries: a systematic review. Clin Orthop Relat Res. 2014;472(9):2644–57. A comprehensive review of the various techniques of stress imaging for ACL laxity.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Beldame J, Bertiaux S, Roussignol X, et al. Laxity measurements using stress radiography to assess anterior cruciate ligament tears. Orthop Traumatol Surg Res. 2011;97(1):34–43.

    Article  CAS  PubMed  Google Scholar 

  3. Benjaminse A, Gokeler A, van der Schans CP. Clinical diagnosis of an anterior cruciate ligament rupture: a meta-analysis. J Orthop Sport Phys Ther. 2006;36(5):267–88.

    Article  Google Scholar 

  4. Oei EHG, Nikken JJ, Verstijnen ACM, Ginai AZ, Myriam Hunink MG. MR imaging of the menisci and cruciate ligaments: a systematic review. Radiology. 2003;226(3):837–48.

    Article  PubMed  Google Scholar 

  5. Panisset JC, Ntagiopoulos PG, Saggin PR, Dejour D. A comparison of Telos stress radiography versus Rolimeter in the diagnosis of different patterns of anterior cruciate ligament tears. Orthop Traumatol Surg Res. 2012;98(7):751–8.

    Article  PubMed  Google Scholar 

  6. Lee YS, Han SH, Jo J, Kwak K-S, Nha KW, Kim JH. Comparison of 5 different methods for measuring stress radiographs to improve reproducibility during the evaluation of knee instability. Am J Sports Med. 2011;39(6):1275–81.

    Article  PubMed  Google Scholar 

  7. Wirz P, von Stokar P, Jakob RP. The effect of knee position on the reproducibility of measurements taken from stress films: a comparison of four measurement methods. Knee Surg Sports Traumatol Arthrosc. 2000;8(3):143–8.

    Article  CAS  PubMed  Google Scholar 

  8. McPhee IB, Fraser JG. Stress radiography in acute ligamentous injuries of the knee. Injury. 1981;12(5):383–8.

    Article  CAS  PubMed  Google Scholar 

  9. Lerat JL, Moyen BL, Cladière F, Besse JL, Abidi H. Quantification of the Lachman test. J Bone Joint Surg (Br). 2000;82(1):42–7.

    Article  CAS  Google Scholar 

  10. Staubli H-U, Noesberger B, Jakob RP. Stressradiography of the knee. Acta Orthop Scand. 1992;63(249):1–27.

    Google Scholar 

  11. Hooper G. Radiological assessment of anterior cruciate ligament deficiency: a new technique. J Bone Joint Surg (Br). 1986;68(2):292–6.

    CAS  Google Scholar 

  12. Franklin J, Rosenberg T, Paulos L, France EP. Radiographic assessment of instability of the knee due to rupture of the anterior cruciate ligament. J Bone Joint Surg Am. 1991;73(3):365–72.

    CAS  PubMed  Google Scholar 

  13. Dejour H, Walch G, Chambat P, Ranger P. Active subluxation in extension: a new concept of study of the ACL deficient knee. Am J Knee Surg. 1988;1:204–11.

    Google Scholar 

  14. Dejour H, Bonnin M. Tibial translation after anterior cruciate ligament rupture: two radiological tests compared. J Bone Joint Surg (Br). 1994;76(5):745–9.

    CAS  Google Scholar 

  15. Jacobsen K. Stress radiographical measurement of the anteroposterior, medial and lateral stability of the knee joint. Acta Orthop Scand. 1976;47(3):335–4.

    Article  CAS  PubMed  Google Scholar 

  16. Rijke AM, Goitz HT, Mccue FC, Delp JL, Lam D, Southall EP. Graded stress radiography of injured anterior cruciate ligaments. Invest Radiol. 1991;26(11):926–33.

    Article  CAS  PubMed  Google Scholar 

  17. Garcés GL, Perdomo E, Guerra A, Cabrera-Bonilla R. Stress radiography in the diagnosis of anterior cruciate ligament deficiency. Int Orthop. 1995;19(2):86–8.

    Article  PubMed  Google Scholar 

  18. Beldame J, Mouchel S, Bertiaux S, et al. Anterior knee laxity measurement: comparison of passive stress radiographs Telos and “Lerat”, and GNRB arthrometer. Orthop Traumatol Surg Res. 2012;98(7):744–50.

    Article  CAS  PubMed  Google Scholar 

  19. Dejour D, Ntagiopoulos PG, Saggin PR, Panisset JC. The diagnostic value of clinical tests, magnetic resonance imaging, and instrumented laxity in the differentiation of complete versus partial anterior cruciate ligament tears. Arthroscopy. 2013;29(3):491–9.

    Article  PubMed  Google Scholar 

  20. Shino K, Inoue M, Horibe S, Nakamura H, Ono K. Measurement of the anterior instability of the knee. J Bone Joint Surg (Br). 1987;69(4):608–13.

    CAS  Google Scholar 

  21. Lerat JL, Moyen B, Jenny JY, Perrier JP. A comparison of pre-operative evaluation of anterior knee laxity by dynamic X-rays and by the arthrometer KT 1000. Knee Surg Sports Traumatol Arthrosc. 1993;1(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  22. Bouguennec N, Odri GA, Graveleau N, Colombet P. Comparative reproducibility of TELOS and GNRB for instrumental measurement of anterior tibial translation in normal knees. Orthop Traumatol Surg Res. 2015;101(3):301–5. The largest recent study investigating the reliability of GNRB measurements.

    Article  CAS  PubMed  Google Scholar 

  23. Hoshino Y, Araujo P, Ahldén M, et al. Quantitative evaluation of the pivot shift by image analysis using the iPad. Knee Surg Sports Traumatol Arthrosc. 2013;21(4):975–80.

    Article  PubMed  Google Scholar 

  24. Espregueira-Mendes J, Pereira H, Sevivas N, et al. Assessment of rotatory laxity in anterior cruciate ligament-deficient knees using magnetic resonance imaging with Porto-knee testing device. Knee Surg Sports Traumatol Arthrosc. 2012;20(4):671–8.

    Article  PubMed  Google Scholar 

  25. Daniel D, Malcom L, Losse G, Stone ML, Sachs R, Burks R. Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg Am. 1985;67(5):720–6.

    CAS  PubMed  Google Scholar 

  26. Malcom L, Daniel D, Stone ML, Sachs R. The measurement of anterior knee laxity after ACL reconstructive surgery. Clin Orthop Relat Res. 1985;196:35–41.

    PubMed  Google Scholar 

  27. Arneja S, Leith J. Review article: validity of the KT-1000 knee ligament arthrometer. J Orthop Surg. 2009;17(1):77–9.

    CAS  Google Scholar 

  28. Liu S, Osti L, Henry M, Bocchi L. The diagnosis of acute complete tears of the anterior cruciate ligament. J Bone Joint Surg (Br). 1995;77(4):586–8.

    CAS  Google Scholar 

  29. Forster IW, Warren-Smith CD, Tew M. Is the KT1000 knee ligament arthrometer reliable? J Bone Joint Surg (Br). 1989;71(5):843–7.

    CAS  Google Scholar 

  30. Bach BR, Warren RF, Flynn WM, Kroll M, Wickiewiecz TL. Arthrometric evaluation of knees that have a torn anterior cruciate ligament. J Bone Joint Surg Am. 1990;72(9):1299–306.

    PubMed  Google Scholar 

  31. Van Eck CF, Loopik M, van den Bekerom MP, Fu FH, Kerkhoffs GMMJ. Methods to diagnose acute anterior cruciate ligament rupture: a meta-analysis of instrumented knee laxity tests. Knee Surg Sports Traumatol Arthrosc. 2013;21(9):1989–97. A very comprehensive comparison of the reliability and validity of a wide range of arthrometers.

    Article  PubMed  Google Scholar 

  32. Highgenboten CL, Jackson AW, Jansson KA, Meske NB. KT-1000 arthrometer: conscious and unconscious test results using 15, 20, and 30 pounds of force. Am J Sports Med. 1992;20(4):450–4.

    Article  CAS  PubMed  Google Scholar 

  33. Hanten WP, Pace MB. Reliability of measuring anterior laxity of the knee joint using a knee ligament arthrometer. Phys Ther. 1987;67(3):357–9.

    CAS  PubMed  Google Scholar 

  34. Fiebert I, Gresley J, Hoffman S, Kunkel K. Comparative measurements of anterior tibial translation using the KT-1000 knee arthrometer with the leg in neutral, internal rotation, and external rotation. J Orthop Sport Phys Ther. 1994;19(6):331–4.

    Article  CAS  Google Scholar 

  35. Highgenboten C, Jackson A, Meske NB. Genucom, KT-1000, and Stryker knee laxity measuring device comparisons. Am J Sports Med. 1989;17(6):743–6.

    Article  CAS  PubMed  Google Scholar 

  36. Torzilli P, Panariello R, Forbes A, Santner T, Warren R. Measurement reproducibility of two commercial knee test devices. J Orthop Res. 1991;9(5):730–7.

    Article  CAS  PubMed  Google Scholar 

  37. Queale WS, Snyder-Mackler L, Handling K, Richards JG. Instrumented examination of knee laxity in patients with anterior cruciate deficiency: a comparison of the KT-2000, Knee Signature System, and Genucom. J Orthop Sport Phys Ther. 1994;19(6):345–51.

    Article  CAS  Google Scholar 

  38. Myrer JW, Schulthies SS, Fellingham GW. Relative and absolute reliability of the KT-2000 arthrometer for uninjured knees. Am J Sports Med. 1996;24(1):104–8.

    Article  CAS  PubMed  Google Scholar 

  39. Sernert N, Kartus JTJ, Ejerhed L, Karlsson J. Right and left knee laxity measurements: a prospective study of patients with anterior cruciate ligament injuries and normal control subjects. Arthroscopy. 2004;20(6):564–71.

    Article  PubMed  Google Scholar 

  40. Ballantyne BT, French AK, Heimsoth SL, Kachingwe AF, Lee JB, Soderberg GL. Influence of examiner experience and gender on interrater reliability of KT-1000 arthrometer measurements. Phys Ther. 1995;75(10):898–906.

    CAS  PubMed  Google Scholar 

  41. Wroble R, Van Ginkel L, Grood E, Noyes F, Shaffer B. Repeatability of the KT-1000 arthrometer in a normal population. Am J Sports Med. 1990;18(4):396–9.

    Article  CAS  PubMed  Google Scholar 

  42. Hefti F, Muller W, Jakob R, Staubli H. Evaluation of knee ligament injuries with the IKDC form. Knee Surg Sports Traumatol Arthrosc. 1993;1(3–4):226–34.

    Article  CAS  PubMed  Google Scholar 

  43. Wiertsema SH, van Hooff HJA, Migchelsen LAA, Steultjens MPM. Reliability of the KT1000 arthrometer and the Lachman test in patients with an ACL rupture. Knee. 2008;15(2):107–10.

    Article  CAS  PubMed  Google Scholar 

  44. Robnett NJ, Riddle DL, Kues JM. Intertester reliability of measurements obtained with the KT-1000 on patients with reconstructed anterior cruciate ligaments. J Orthop Sport Phys Ther. 1995;21(2):113–9.

    Article  CAS  Google Scholar 

  45. Berry J, Kramer K, Binkley J, et al. Error estimates in novice and expert raters for the KT-1000 arthrometer. J Orthop Sport Phys Ther. 1999;29(1):49–55.

    Article  CAS  Google Scholar 

  46. Markolf KL, Graff-Radford A, Amstutz HC. In vivo knee stability: a quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg Am. 1978;60(5):664–74.

    CAS  PubMed  Google Scholar 

  47. Kowalk DL, Wojtys EM, Disher J, Loubert P. Quantitative analysis of the measuring capabilities of the KT-1000 knee ligament arthrometer. Am J Sports Med. 1993;21(5):744–7.

    Article  CAS  PubMed  Google Scholar 

  48. Sernert N, Helmers J, Kartus C, Ejerhed L, Kartus J. Knee-laxity measurements examined by a left-hand- and a right-hand-dominant physiotherapist, in patients with anterior cruciate ligament injuries and healthy controls. Knee Surg Sports Traumatol Arthrosc. 2007;15(10):1181–6.

    Article  PubMed  Google Scholar 

  49. Wright RW, Luhmann SJ. The effect of knee effusions on KT-1000 arthrometry: a cadaver study. Am J Sports Med. 1998;26(4):571–4.

    CAS  PubMed  Google Scholar 

  50. Robert H, Nouveau S, Gageot S, Gagnière B. A new knee arthrometer, the GNRB: experience in ACL complete and partial tears. Orthop Traumatol Surg Res. 2009;95(3):171–6.

    Article  CAS  PubMed  Google Scholar 

  51. Collette M, Courville J, Forton M, Gagnière B. Objective evaluation of anterior knee laxity; comparison of the KT-1000 and GNRB arthrometers. Knee Surg Sports Traumatol Arthrosc. 2012;20(11):2233–8.

    Article  PubMed  Google Scholar 

  52. Vauhnik R, Morrissey MC, Perme MP, Sevsek F, Rugelj D. Inter-rater reliability of the GNRB knee arthrometer. Knee. 2014;21(2):541–3.

    Article  PubMed  Google Scholar 

  53. Vauhnik R, Perme MP, Barcellona MG, Rugelj D, Morrissey MC, Sevsek F. Robotic knee laxity testing: reliability and normative data. Knee. 2013;20(4):250–5.

    Article  PubMed  Google Scholar 

  54. Lefevre N, Bohu Y, Naouri JF, Klouche S, Herman S. Validity of GNRB arthrometer compared to Telos in the assessment of partial anterior cruciate ligament tears. Knee Surg Sports Traumatol Arthrosc. 2014;22(2):285–90. The largest recent study comparing GNRB to stress imaging and establishing its utility in diagnosis of partial ACL tears.

    Article  CAS  PubMed  Google Scholar 

  55. Balasch H, Schiller M, Friebel H, Hoffmann F. Evaluation of anterior knee joint instability with the Rolimeter: a test in comparison with manual assessment and measuring with the KT-1000 arthrometer. Knee Surg Sports Traumatol Arthrosc. 1999;7:204–8.

    Article  CAS  PubMed  Google Scholar 

  56. Hatcher J, Hatcher A, Arbuthnot J, McNicholas M. An investigation to examine the inter-tester and intra-tester reliability of the Rolimeter knee tester, and its sensitivity in identifying knee joint laxity. J Orthop Res. 2005;23(6):1399–403.

    PubMed  Google Scholar 

  57. Muellner T, Bugge W, Johansen S, Holtan C, Engebretsen L. Inter- and intratester comparison of the Rolimeter knee tester: effect of tester’s experience and the examination technique. Knee Surg Sports Traumatol Arthrosc. 2001;9(5):302–6.

    Article  CAS  PubMed  Google Scholar 

  58. Papandreou MG, Antonogiannakis E, Karabalis C, Karliaftis K. Inter-rater reliability of Rolimeter measurements between anterior cruciate ligament injured and normal contralateral knees. Knee Surg Sports Traumatol Arthrosc. 2005;13:592–7.

    Article  PubMed  Google Scholar 

  59. Schuster AJ, Mcnicholas MJ, Wachtl SW, Mcgurty DW, Jakob RP. A new mechanical testing device for measuring anteroposterior knee laxity. Am J Sports Med. 2004;32(7):1731–5.

    Article  PubMed  Google Scholar 

  60. Passler H, Ververidis A, Monauni F. Beweglichkeitswertung an knien mit VKB-schaden mit hilfe des KT 1000 und Aircast Rolimeter. Hefte zur Zeitschrift der Unfallchirurg. 1998;272:731–2.

    Google Scholar 

  61. Oliver JH, Coughlin LP. Objective knee evaluation using the Genucom Knee Analysis System: clinical implications. Am J Sports Med. 1987;15(6):571–8.

    Article  CAS  PubMed  Google Scholar 

  62. Highgenboten C, Jackson A, Meske N. Genucom knee analysis system: reproducibility and database development. Med Sci Sports Exerc. 1990;22(5):713–7.

    Article  CAS  PubMed  Google Scholar 

  63. McQuade KJ, Sidles JA, Larson RV. Reliability of the Genucom Knee Analysis System: a pilot study. Clin Orthop Relat Res. 1989;245:216–9.

    PubMed  Google Scholar 

  64. Steiner M, Brown C, Zarins B, Brownstein B, Koval P, Stone P. Measurement of anterior-posterior displacement of the knee. J Bone Joint Surg Am. 1990;72(9):1307–15.

    CAS  PubMed  Google Scholar 

  65. Andersen HN, Frandsen PA. Assessment of anterior cruciate laxity using the Genucom System. Int Orthop. 1993;17(6):375–83.

    Article  CAS  PubMed  Google Scholar 

  66. Draganich L, Sathy M, Reider B. The effect of thigh and goniometer restraints on the reproducibility of the genucom knee analysis system. Am J Sports Med. 1994;22(5):627–31.

    Article  CAS  PubMed  Google Scholar 

  67. Granberry W, Noble P, Woods W. Evaluation of an electrogoniometric instrument for measurement of laxity of the knee. J Bone Joint Surg Am. 1990;72(9):1316–22.

    CAS  PubMed  Google Scholar 

  68. Wroble RR, Grood ES, Noyes FR, Schmitt DJ. Reproducibility of Genucom knee analysis system testing. Am J Sports Med. 1990;18(4):387–95.

    Article  CAS  PubMed  Google Scholar 

  69. Boniface RJ, Fu FH, Ilkhanipour K. Objective anterior cruciate ligament testing. Orthopedics. 1986;9(3):391–3.

    CAS  PubMed  Google Scholar 

  70. Sherman OH, Markolf KL, Ferkel RD. Measurements of anterior laxity in normal and anterior cruciate absent knees with two instrumented test devices. Clin Orthop Relat Res. 1987;215:156–61.

    PubMed  Google Scholar 

  71. Pugh L, Mascarenhas R, Arneja S, Chin PYK, Leith JM. Current concepts in instrumented knee-laxity testing. Am J Sports Med. 2009;37(1):199–210.

    Article  PubMed  Google Scholar 

  72. Un BS, Beynnon BD, Churchill DL, Haugh LD, Risberg MA, Fleming BC. A new device to measure knee laxity during weightbearing and non-weightbearing conditions. J Orthop Res. 2001;19(6):1185–91.

    Article  PubMed  Google Scholar 

  73. Edixhoven P, Huiskes R, de Graaf R, van Rens TJG, Slooff TJ. Accuracy and reproducibility of instrumented knee-drawer tests. J Orthop Res. 1987;5(3):378–87.

    Article  CAS  PubMed  Google Scholar 

  74. Fruensgaard S, Krøner K, Riis J. Suture of the torn anterior cruciate ligament. Acta Orthop Scand. 1992;63(3):323–5.

    Article  CAS  PubMed  Google Scholar 

  75. Daniel DM, Stone ML, Sachs R, Malcom L. Instrumented measurement of anterior knee laxity in patients with acute anterior cruciate ligament disruption. Am J Sports Med. 1985;13(6):401–7.

    Article  CAS  PubMed  Google Scholar 

  76. Ramski DE, Kanj WW, Franklin CC, Baldwin KD, Ganley TJ. Anterior cruciate ligament tears in children and adolescents: a meta-analysis of nonoperative versus operative treatment. Am J Sports Med. 2014;42(11):2769–76.

    Article  PubMed  Google Scholar 

  77. Klouche S, Lefevre N, Cascua S, Herman S, Gerometta A, Bohu Y. Diagnostic value of the GNRB in relation to pressure load for complete ACL tears : a prospective case–control study of 118 subjects. Orthop Traumatol Surg Res. 2015;101(3):297–300. The largest case–control study evaluating the diagnostic capabilities of the GNRB arthrometer.

    Article  CAS  PubMed  Google Scholar 

  78. Liu W, Maitland ME, Bell GD. A modeling study of partial ACL injury: simulated KT-2000 arthrometer tests. J Biomech Eng. 2002;124(3):294–301.

    Article  PubMed  Google Scholar 

  79. Wordeman SC, Paterno MV, Quatman CE, Bates NA, Hewett TE. Arthrometric curve-shape variables to assess anterior cruciate ligament deficiency. Clin Biomech. 2012;27(8):830–6.

    Article  Google Scholar 

  80. Maitland ME, Bell GD, Mohtadi NGH, Herzog W. Quantitative analysis of anterior cruciate ligament instability. Clin Biomech. 1995;10(2):93–7.

    Article  Google Scholar 

  81. Jenny J, Arndt J, Computer Assisted OrthoPaedic Surgery-France (CAOS). Anterior knee laxity measurement using stress radiographs and the GNRB system versus intraoperative navigation. Orthop Traumatol Surg Res. 2013;99(6):S297–300. Compares GNRB arthrometry to stress imaging and finds comparable results, supporting its clinical value.

    Article  PubMed  Google Scholar 

  82. Staubli H-U, Jakob RP. Anterior knee motion analysis—measurement and simultaneous radiography. Am J Sports Med. 1991;19(2):172–7.

    Article  CAS  PubMed  Google Scholar 

  83. Fleming BC, Brattbakk B, Peura GD, Badger GJ, Beynnon BD. Measurement of anterior-posterior knee laxity: a comparison of three techniques. J Orthop Res. 2002;20(3):421–6.

    Article  PubMed  Google Scholar 

  84. Anderson AF, Snyder RB, Federspiel CF, Lipscomb AB. Instrumented evaluation of knee laxity: a comparison of five arthrometers. Am J Sports Med. 1992;20(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  85. Ganko A, Engebretsen L, Ozer H. The Rolimeter a new arthrometer compared with the KT-1000. Knee Surg Sports Traumatol Arthrosc. 2000;8(1):36–9.

    Article  CAS  PubMed  Google Scholar 

  86. Anderson AF, Lipscomb AB. Preoperative instrumented testing of anterior and posterior knee laxity. Am J Sports Med. 1989;17(3):387–92.

    Article  CAS  PubMed  Google Scholar 

  87. Graham G, Johnson S, Dent C, Fairclough J. Comparison of clinical tests and the KT1000 in the diagnosis of anterior cruciate ligament rupture. Br J Sports Med. 1991;25(2):96–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. DeFranco M, Bach B. A comprehensive review of partial anterior cruciate ligament tears. J Bone Joint Surg Am. 2009;91(1):198–208.

    Article  PubMed  Google Scholar 

  89. Fritschy D, Panoussopoulos A, Wallensten R, Peter R. Can we predict the outcome of a partial rupture of the anterior cruciate ligament? A prospective study of 43 cases. Knee Surg Sports Traumatol Arthrosc. 1997;5(1):2–5.

    Article  CAS  PubMed  Google Scholar 

  90. Bak K, Scavenius M, Hansen S, Nørring K, Jensen KH, Jorgensen U. Isolated partial rupture of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc. 1997;5(2):66–71.

    Article  CAS  PubMed  Google Scholar 

  91. Messner K, Maletius W. Eighteen- to twenty-five-year follow-up after acute partial anterior cruciate ligament rupture. Am J Sports Med. 1999;27(4):455–9.

    CAS  PubMed  Google Scholar 

  92. Lintner DM, Kamaric E, Moseley JB, Noble PC. Partial tears of the anterior cruciate ligament: are they clinically detectable? Am J Sports Med. 1995;23(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  93. Noyes FR, Mooar LA, Moorman III CT, McGinniss GH. Partial tears of the anterior cruciate ligament. J Bone Joint Surg (Br). 1989;71(5):825–33.

    CAS  Google Scholar 

  94. Fruensgaard S, Johannsen HV. Incomplete ruptures of the anterior cruciate ligament. J Bone Joint Surg (Br). 1989;71(3):526–30.

    CAS  Google Scholar 

  95. Kim S, Lee S, Kim S, Kim S, Kim J, Jung M. Does anterior laxity of the uninjured knee influence clinical outcomes of ACL reconstruction? J Bone Joint Surg Am. 2014;96(7):543–8. Suggests that uninvolved knee laximetry can help predict the outcome of contralateral knee ACL reconstruction. Validates arthrometry as a quantitative tool, as opposed to simply a dichotomous tool.

    Article  PubMed  Google Scholar 

  96. Kiapour A, Wordeman S, Paterno M, et al. Diagnostic value of knee arthrometry in the prediction of anterior cruciate ligament strain during landing. Am J Sports Med. 2014;42(2):312–9. Validates knee laximetry as correlated with in-vivo ACL stress during functional athletic maneuvers.

    Article  PubMed  Google Scholar 

  97. Hyder N, Bollen S, Sefton G, Swann A. Correlation between arthrometric evaluation of knees using KT 1000 and Telos stress radiography and functional outcome following ACL reconstruction. Knee. 1997;4(3):121–4.

    Article  Google Scholar 

  98. Pollet V, Barrat D, Meirhaeghe E, Vaes P, Handelberg F. The role of the Rolimeter in quantifying knee instability compared to the functional outcome of ACL-reconstructed versus conservatively-treated knees. Knee Surg Sports Traumatol Arthrosc. 2005;13(1):12–8.

    Article  CAS  PubMed  Google Scholar 

  99. Giannotti BF, Fanelli GC, Barrett TA, Edson C. The predictive value of intraoperative KT-1000 arthrometer measurements in single incision anterior cruciate ligament reconstruction. Arthroscopy. 1996;12(6):660–6.

    Article  CAS  PubMed  Google Scholar 

  100. O’Brien S, Warren R, Pavlov H, Panariello R, Wickiewicz T. Reconstruction of the chronically insufficient anterior cruciate ligament with the central third of the patellar ligament. J Bone Joint Surg Am. 1991;73(2):278–86.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Macalena.

Ethics declarations

Conflict of interest

Eric M. Rohman declares that he has no conflict of interest.

Jeffrey A. Macalena has served as a consultant for Vericel, Smith and Nephew, and Arthrex within the past 36 months, outside of the submitted work.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on ACL Update: Objective Measures on Knee Instability

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohman, E.M., Macalena, J.A. Anterior cruciate ligament assessment using arthrometry and stress imaging. Curr Rev Musculoskelet Med 9, 130–138 (2016). https://doi.org/10.1007/s12178-016-9331-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12178-016-9331-1

Keywords

Navigation