Skip to main content
Log in

Transdisciplinary Perspectives on Sweetness

  • Published:
Chemosensory Perception

Abstract

Sweetness is classically considered a single perceptual experience. However, diverse compounds can elicit this sensation, suggesting the existence of multiple pathways toward this end. This paper presents an overview of chemical theories of sweetness, reviews the phylogenetic and behavioral evidence for multiple pathways, and presents a summary of recent molecular advances regarding the sweet receptor. Potential sites for signal integration are discussed, and implications for nutritionists and food scientists are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. Depending on the field, one often finds the phrase “X times sweeter than sucrose.” This phrasing is highly misleading for two reasons. First, “high-intensity” sweeteners are rarely sweeter than concentrated sucrose; rather, this ratio refers to the amount needed to evoke a threshold response. Second, it mistakenly implies that that all sweeteners have similar psychophysical slopes across concentration. In reality, the relative sweetness of a compound to sucrose varies greatly across concentration (eg Cardello HM, Da Silva MA, Damasio MH. 1999. Plant Foods Hum Nutr 54(2):119–30.).

  2. In spite of poor documentation in the open literature, sweetener synergy is presumably an extremely well characterized phenomenon, given the large amount of unpublished research conducted within industry.

References

  • Acree TE (1970) A molecular theory of sweet taste—amino acids and peptides. Carbohydrate/Oilseeds Division of the American Association of Cereal Chemists. Excelsior Springs, MO, USA

    Google Scholar 

  • Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS (2000) A novel family of mammalian taste receptors. Cell 100(6):693–702

    CAS  Google Scholar 

  • Amrein H, Bray S (2003) Bitter-sweet solution in taste transduction. Cell 112(3):283–284

    CAS  Google Scholar 

  • Ayya N, Lawless HT (1992) Quantitative and qualitative evaluation of high-intensity sweeteners and sweetener mixtures. Chem Senses 17(3):245–259

    CAS  Google Scholar 

  • Bachmanov AA (2005) Genetic approach to characterize interaction of sweeteners with sweet taste receptors in vivo. Chem Senses 30(Suppl 1):i82–i83

    CAS  Google Scholar 

  • Bachmanov AA, Tordoff MG, Beauchamp GK (2001) Sweetener preference of C57BL/6ByJ and 129P3/J mice. Chem Senses 26(7):905–913

    CAS  Google Scholar 

  • Bachmanov AA, Reed DR, Li X, Beauchamp GK (2002) Genetics of sweet taste preferences. Pure Appl Chem 74(7):1135–1140

    CAS  Google Scholar 

  • Bakal AI, Cumberland Packing Corp., assignee (1984) Sweetening foods with non-caloric di- or trisaccharides having L-hexose component. Brooklyn NY patent 426-658-000 127-030-000 424-361-000 426-804-000 536-001-100

  • Bartoshuk LM, Dateo GP, Vanderbelt DJ, Buttrick RL, Long L (1969) Effect of Gymnema sylvestre and Synsepalum dulcificum on taste in man. In: Pfaffmann (ed) COlfaction and taste. Rockefeller University Press, New York, pp 436–444

    Google Scholar 

  • Bartoshuk LM, Gentile RL, Molkowitz HR, Meiselman HL (1974) Sweet taste induced by miracle fruit (Synsepalum dulcificum). Physiol Behav 12(3):449–456

    CAS  Google Scholar 

  • Bartoshuk LM, Fast K, Snyder DJ (2005) Differences in our sensory worlds: invalid comparisons with labeled scales. Curr Dir Psychol Sci 14(3):122–125

    Google Scholar 

  • Bassoli A, Drew MGB, Merlini D, Morini G (2002a) General pseudoreceptor model for sweet compounds: a semiquantitative prediction of binding affinity for sweet-tasting molecules. J Med Chem 45(20):4402–4409

    CAS  Google Scholar 

  • Bassoli A, Merlini L, Morini G (2002b) Isovanillyl sweeteners. From molecules to receptors. Pure Appl Chem 74(7):1181–1187

    CAS  Google Scholar 

  • Bernhardt SJ, Naim M, Zehavi U, Lindemann B (1996) Changes in IP3 and cytosolic Ca2+ in response to sugars and non-sugar sweeteners in transduction of sweet taste in the rat. J Physiol 490(Pt 2):325–336

    CAS  Google Scholar 

  • Birch GG (1987) Chemical aspects of sweetness. In: Dobbing J, International Life Sciences Institute (ed) Sweetness, Springer New York, pp 3–13

    Google Scholar 

  • Boring EG (1942) Sensation and perception in the history of experimental psychology. Appleton-Century, New York

    Google Scholar 

  • Brand JG, Feigin AM (1996) Biochemistry of sweet taste transduction. Food Chem 56(3):199–207

    CAS  Google Scholar 

  • Bray GA, Nielsen SJ, Popkin BM (2004) Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr 79(4):537–543

    CAS  Google Scholar 

  • Breslin PA, Kemp S, Beauchamp GK (1994) Single sweetness signal. Nature 369(6480):447–448

    CAS  Google Scholar 

  • Caicedo A, Kim KN, Roper SD (2002) Individual mouse taste cells respond to multiple chemical stimuli. J Physiol 544(Pt 2):501–509

    CAS  Google Scholar 

  • Cardello HM, Da Silva MA, Damasio MH (1999) Measurement of the relative sweetness of stevia extract, aspartame and cyclamate/saccharin blend as compared to sucrose at different concentrations. Plant Foods Hum Nutr 54(2):119–130

    CAS  Google Scholar 

  • Cohn G (1914) Die Organischen Geschmackstoffe. F. Siemenroth, Berlin

    Google Scholar 

  • Cruz A, Green BG (2000) Thermal stimulation of taste. Nature 403(6772) 889–892

    CAS  Google Scholar 

  • Danilova V, Danilov Y, Roberts T, Tinti JM, Nofre C, Hellekant G (2002) Sense of taste in a new world monkey, the common marmoset: recordings from the chorda tympani and glossopharyngeal nerves. J Neurophysiol 88(2):579–594

    Google Scholar 

  • Danilova V, Hellekant G (2004) Sense of taste in a New World monkey, the common marmoset. II. Link between behavior and nerve activity. J Neurophysiol 92(2):1067–1076

    Google Scholar 

  • De Francisco JC, Dess NK (1998) Aspartame consumption in rats selectively bred for high versus low saccharin intake. Physiol Behav 65(2):393–396

    Google Scholar 

  • Delwiche J (1996) Are there ‘basic’ tastes? Trends Food Sci Technol 7(12):411–415

    CAS  Google Scholar 

  • DiMeglio DP, Mattes RD (2000) Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes Relat Metab Disord 24(6):794–800

    CAS  Google Scholar 

  • Duffy VB, Sigmand-Grant M (2004) Position of the American Dietetic Association: use of nutritive and nonnutritive sweeteners. J Am Diet Assoc 104(2):255–275

    CAS  Google Scholar 

  • Duffy VB, Hayes JE, Dinehart ME (2006) Genetic differences in sweet taste perception. In: Spillane WJ (ed) Optimising the sweet taste in foods. Woodhead, Cambridge, pp 30–53

    Google Scholar 

  • Eggers SC, Acree TE, Shallenberger RS (2000) Sweetness chemoreception theory and sweetness transduction. Food Chem 68(1):45–49

    CAS  Google Scholar 

  • Ennis DM (2002) Molecular mixture models: connect molecular events to perception. In: Given P, Paredes D, American Chemical Society, Division of Agricultural and Food Chemistry (eds) American Chemical Society. Meeting (219th: 2000: San Francisco Calif.) Chemistry of taste: mechanisms, behavior, and mimics. American Chemical Society, Washington, DC, pp 32–38

  • Erickson RP (1977) The role of ‘primaries’ in taste research. In: Le Magnen J, Mac Leod P (eds) Olfaction and taste VI: proceedings of the sixth international symposium held at Gif-sur-Yvette, Paris, France, 15–17th July, 1977 Information RetrievalWashington, DC, USA, pp vii, 527

    Google Scholar 

  • Erickson RP (2000) The evolution of neural coding ideas in the chemical senses. Physiol Behav 69(1–2):3–13

    CAS  Google Scholar 

  • Eylam S, Kennedy LM (1998) Identification and characterization of human fructose or glucose taste variants with hypogeusia for one monosaccharide but not for the other. Ann N Y Acad Sci 855:170–174

    CAS  Google Scholar 

  • Faurion A (1993) The physiology of sweet taste and molecular receptors. In: Mathlouthi M, Kanters JA, Birch GG (eds) Sweet-taste chemoreception. Elsevier Applied Science, New York, pp 291–315

    Google Scholar 

  • Fischer E (1894) Einsfluss der Configuration auf die Wirkung der Enzyme. Ber Dtsch Chem Ges 27:2985–2993

    CAS  Google Scholar 

  • Fontvieille AM, Faurion A, Helal I, Rizkalla SW, Falgon S, Letanoux M, Tchobroutsky G, Slama G (1989) Relative sweetness of fructose compared with sucrose in healthy and diabetic subjects. Diabetes Care 12(7):481–486

    CAS  Google Scholar 

  • Freeman KB, Riley AL (2005) Conditioned taste aversion: an annotated bibliography. http://www.ctalearning.com.

  • Froloff N, Lloret E, Martinez JM, Faurion A (1998) Cross-adaptation and molecular modeling study of receptor mechanisms common to four taste stimuli in humans. Chem Senses 23(2):197–206

    CAS  Google Scholar 

  • Gardner BJ (1984) Investigation of sweet taste mechanism by taste interactions. Purdue University, West Lafayette, IN

    Google Scholar 

  • Gent JF, Hettinger TP, Frank ME, Marks LE (1999) Taste confusions following gymnemic acid rinse. Chem Senses 24(4):393–403

    CAS  Google Scholar 

  • Glaser D (1999) The evolution of taste perception. In: Corti A (ed) Low-calorie sweeteners: present and future. Karger, Basel, pp 18–38

    Google Scholar 

  • Glaser D (2002) Specialization and phyletic trends of sweetness reception in animals. Pure Appl Chem 74(7):1153–1158

    CAS  Google Scholar 

  • Glaser D, Tinti JM, Nofre C (1995) Evolution of the sweetness receptor in primates. I. Why does alitame taste sweet in all prosimians and simians, and aspartame only in Old World simians? Chem Senses 20(5):573–584

    CAS  Google Scholar 

  • Glaser D, Tinti JM, Nofre C (1996) Gustatory responses of non-human primates to dipeptide derivatives or analogues, sweet in man. Food Chem 56(3)313–321

    CAS  Google Scholar 

  • Glendinning JI, Hills TT (1997) Electrophysiological evidence for two transduction pathways within a bitter-sensitive taste receptor. J Neurophysiol 78(2):734–745

    CAS  Google Scholar 

  • Goodman M, Del Valle JR, Amino Y, Benedetti E (2002) Molecular basis of sweet taste in dipeptide taste ligands. Pure Appl Chem 74(7):1109–1116

    CAS  Google Scholar 

  • Green BG, George P (2004) ‘Thermal taste’ predicts higher responsiveness to chemical taste and flavor. Chem Senses 29(7):617–628

    CAS  Google Scholar 

  • Halpern BP (1997) Psychophysics of taste. In: Beauchamp GK, Bartoshuk LM (eds) Tasting and smelling. Handbook of perception and cognition. Academic, San Diego, CA, pp 77–123

    Google Scholar 

  • Halpern BP (2002) Taste. In: Stevens SS, Pashler HE (eds) Steven’s handbook of experimental psychology, vol. 1. Sensation and perception, 3rd edn. Wiley, New York, pp 653–690

    Google Scholar 

  • Hayes JE, Duffy VB (2007) Revisiting sugar-fat mixtures: sweetness and creaminess vary with phenotypic markers of oral sensation. Chem Senses 32(3):225–236

    CAS  Google Scholar 

  • Hellekant G, Danilova V (1996) Species differences toward sweeteners. Food Chem 56(3):323–328

    CAS  Google Scholar 

  • Hiji T (1975) Selective elimination of taste responses to sugars by proteolytic enzymes. Nature 256(5516):427–429

    CAS  Google Scholar 

  • Hyvonen L, Kurkela R, Koivistoinen P, Ratilainen A (1978) Fructose-saccharin and xylitol-saccharin synergism. J Food Sci 43:251–254

    CAS  Google Scholar 

  • Inoue M, Reed DR, Li X, Tordoff MG, Beauchamp GK, Bachmanov AA (2004) Allelic variation of the Tas1r3 taste receptor gene selectively affects behavioral and neural taste responses to sweeteners in the F2 hybrids between C57BL/6ByJ and 129P3/J mice. J Neurosci 24(9):2296–303

    CAS  Google Scholar 

  • Institute of Medicine of the National Academy of Sciences (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. National Academy of Sciences, Washington, DC, USA

    Google Scholar 

  • Jakinovich W Jr (1981) Stimulation of the gerbil’s gustatory receptors by artificial sweeteners. Brain Res 210(1–2):69–81

    CAS  Google Scholar 

  • Jiang P, Cui M, Zhao B, Liu Z, Snyder LA, Benard LM, Osman R, Margolskee RF, Max M (2005a) Lactisole interacts with the transmembrane domains of human T1R3 to inhibit sweet taste. J Biol Chem 280(15):15238–15246

    CAS  Google Scholar 

  • Jiang P, Cui M, Zhao B, Snyder LA, Benard LM, Osman R, Max M, Margolskee RF (2005b) Identification of the cyclamate interaction site within the transmembrane domain of the human sweet taste receptor subunit T1R3. J Biol Chem 280(40):34296–34305

    CAS  Google Scholar 

  • Johnson C, Birch GG, MacDougall DB (1994) The effect of the sweetness inhibitor 2(-4-methoxyphenoxy)propanoic acid (sodium salt) (Na-PMP) on the taste of bitter-sweet stimuli. Chem Senses 19(4):349–358

    CAS  Google Scholar 

  • Keast RSJ, Breslin PAS (2002) Cross-adaptation and bitterness inhibition of L-tryptophan, L-phenylalanine and urea: Further support for shared peripheral physiology. Chem Senses 27(2):123–131

    Google Scholar 

  • Keast RS, Canty TM, Breslin PA (2004) Oral zinc sulfate solutions inhibit sweet taste perception. Chem Senses 29(6):513–521

    CAS  Google Scholar 

  • Kennedy LM, Eylam S, Poskanzer JE, Saikku AR (1997) Genetic analyses of sweet taste transduction. Food Chem 60(3):311–321

    CAS  Google Scholar 

  • Keskitalo K, Knaapila A, Kallela M, Palotie A, Wessman M, Sammalisto S, Peltonen L, Tuorila H, Perola M (2007) Sweet taste preferences are partly genetically determined: identification of a trait locus on chromosome 16. Am J Clin Nutr 86(1):55–63

    CAS  Google Scholar 

  • Kier LB (1972) A molecular theory of sweet taste. J Pharm Sci 61(9):1394–1397

    CAS  Google Scholar 

  • Kurihara Y, Nirasawa S (1994) Sweet, antisweet and sweetness-inducing substances. Trends in Food Sci Technol 5:37–42

    CAS  Google Scholar 

  • Laffort P, Walsh RM, Spillane WJ (2002) Application of the U and gamma’ models in binary sweet taste mixtures. Chem Senses 27(6):511–520

    CAS  Google Scholar 

  • Lancet D, Ben-Arie N (1991) Sweet taste transduction: a molecular-biological analysis. In: Walters DE, Orthoefer FT, DuBois GE (eds) Sweeteners: discovery, molecular design, and chemoreception. American Chemical Society, Washington, DC, USAx, 333

    Google Scholar 

  • Lawless HT (1979) Evidence for neural inhibition in bittersweet taste mixtures. J Comp Physiol Psychol 93(3):538–547

    CAS  Google Scholar 

  • Lawless HT (1998) Theoretical note: tests of synergy in sweetener mixtures. Chem Senses 23(4):447–451

    Article  CAS  Google Scholar 

  • Lawless HT, Stevens DA (1983) Cross adaptation of sucrose and intensive sweeteners. Chem Senses 7(3–4):309–315

    CAS  Google Scholar 

  • Levin GV; Biospherics Incorporated, assignee (1981) Sweetened edible formulations. Rockville MD patent 426-658-000 426-804-000 424-361-000

  • Li X, Staszewski L, Xu H, Durick K, Zoller M, Adler E (2002) Human receptors for sweet and umami taste. Proc Natl Acad Sci USA 99(7):4692–4696

    CAS  Google Scholar 

  • Lichtenthaler FW, Immel S (1993) Sucrose, sucralose, and fructose: correlations between hydrophobicity potential profiles and AH-B-X assignments. In: Mathlouthi M, Kanters JA, Birch GG (eds) Sweet-taste chemoreception. Elsevier Applied Science, New York, pp 21–53

    Google Scholar 

  • Lichtenthaler FW, Immel S (1995) Computer-simulation of chemical and biological properties of sucrose, the cyclodextrins and amylose. Int Sugar J 97(1153):13–22

    CAS  Google Scholar 

  • Lichtenthaler FW, Immel S, Kreis U (1991) Evolution of the structural representation of sucrose. Starch/Starke 43:121–132

    CAS  Google Scholar 

  • Lindley MG (1991) Phenoxyalkanoic acid sweetness inhibitors. In: Walters DE, Orthoefer FT, DuBois GE (eds) Sweeteners: discovery, molecular design, and chemoreception. American Chemical Society, Washington, DC, pp 251–260

    Google Scholar 

  • Lindley M (2006) Taste-ingredient interactions modulating sweetness. In: Spillane WJ (ed) Optimising the sweet taste in foods. Woodhead, Cambridge, UK

    Google Scholar 

  • Margolskee RF (2002) Molecular mechanisms of bitter and sweet taste transduction. J Biol Chem 277(1):1–4

    CAS  Google Scholar 

  • Mathlouthi M, Angiboust JF, Kacurakova M, Hooft RWW, Kanters JA, Kroon J (1994) Structural studies on sweet taste inhibitors - lactisole, Dl-2(4-Methoxyphenoxy)-Propanoic acid. J Mol Struct 326:25–34

    CAS  Google Scholar 

  • Mattes R (2005) Soup and satiety. Physiol Behav 83(5):739–747

    CAS  Google Scholar 

  • McBurney DH, Smith DV, Shick TR (1972) Gustatory cross adaptation: sourness and bitterness. Percept Psychophys 11(3):228–232

    Google Scholar 

  • Nelson G, Hoon MA, Chandrashekar J, Zhang Y, Ryba NJ, Zuker CS (2001) Mammalian sweet taste receptors. Cell 106(3):381–390

    CAS  Google Scholar 

  • Nielsen SJ, Popkin BM (2004) Changes in beverage intake between 1977 and 2001. Am J Prev Med 27(3):205–210

    Google Scholar 

  • Nofre C, Glaser D, Tinti JM, Wanner M (2002) Gustatory responses of pigs to sixty compounds tasting sweet to humans. J Anim Physiol Anim Nutr (Berl) 86(3–4):90–96

    CAS  Google Scholar 

  • Nofre C, Tinti JM (1983) US Patent No. 4645678

  • Nofre C, Tinti JM (1987) US Patent No. 4921939

  • Nofre C, Tinti JM (1996) Sweetness reception in man: the multipoint attachment theory. Food Chem 56(3):263–274

    CAS  Google Scholar 

  • Nofre C, Tinti JM, Glaser D (1996) Evolution of the sweetness receptor in primates. II. Gustatory responses of non-human primates to nine compounds known to be sweet in man. Chem Senses 21(6):747–762

    CAS  Google Scholar 

  • Nowlis GH, Frank ME, Pfaffmann C (1980) Specificity of acquired aversions to taste qualities in hamsters and rats. J Comp Physiol Psychol 94(5):932–942

    CAS  Google Scholar 

  • Oertly E, Myers RG (1919) A new theory relating constitution to taste. J Am Chem Soc 41:855–867

    CAS  Google Scholar 

  • Pangborn RM (1970) Individual Variation in affective responses to taste stimuli. Psychon Sci 21(2):125–126

    Google Scholar 

  • Reed DR, Li S, Li X, Huang L, Tordoff MG, Starling-Roney R, Taniguchi K, West DB, Ohmen JD, Beauchamp GK et al (2004) Polymorphisms in the taste receptor gene (Tas1r3) region are associated with saccharin preference in 30 mouse strains. J Neurosci 24(4):938–946

    CAS  Google Scholar 

  • Reed DR, Li X, Chen Z, Mascioli K, Bachmanov AA, Beauchamp GK, Tordoff MG, Max M, Margolskee R, Bartoshuk LM et al (2002) Alleles of the taste receptor gene TAS1R3 may influence the pleasantness of sucrosee and aspartame in human subjects. Obes Res 10(1):67

    Google Scholar 

  • Richter CP, Campbell KH (1939) Sucrose taste thresholds of rats and humans. Am J Physiol Legacy Content 128(2):291–297

    Google Scholar 

  • Roberts RM (1989) Serendipity: accidental discoveries in science. Wiley, New York

    Google Scholar 

  • Schifferstein HN (1996) An equiratio mixture model for non-additive components: a case study for aspartame/acesulfame-K mixtures. Chem Senses 21(1):1–11

    CAS  Google Scholar 

  • SchiffmanSS, EricksonRP1971A psychophysical model for gustatory qualityPhysiology and Behavior7617–633

    CAS  Google Scholar 

  • Schiffman SS, Cahn H, Lindley MG (1981) Multiple receptor sites mediate sweetness: evidence from cross adaptation. Pharmacol Biochem Behav 15(3):377–388

    CAS  Google Scholar 

  • Schiffman SS, Booth BJ, Carr BT, Losee ML, Sattely-Miller EA, Graham BG (1995) Investigation of synergism in binary mixtures of sweeteners. Brain Res Bull 38(2):105–120

    CAS  Google Scholar 

  • Schiffman SS, Booth BJ, Sattely-Miller EA, Graham BG, Gibes KM (1999) Selective inhibition of sweetness by the sodium salt of +/−2-(4- methoxyphenoxy)propanoic acid. Chem Senses 24(4):439–447

    CAS  Google Scholar 

  • Schiffman SS, Sattely-Miller EA, Graham BG, Booth BJ, Gibes KM (2000) Synergism among ternary mixtures of fourteen sweeteners. Chem Senses 25(2):131–140

    CAS  Google Scholar 

  • Sclafani A, Abrams M (1986) Rats show only a weak preference for the artificial sweetener aspartame. Physiol Behav 37(2):253–256

    CAS  Google Scholar 

  • Shallenberger RS (1997) Taste recognition chemistry. Pure Appl Chem 69(4):659–666

    CAS  Google Scholar 

  • Shallenberger RS, Acree TE (1967) Molecular theory of sweet taste. Nature 216(114):480–482

    CAS  Google Scholar 

  • Shallenberger RS, Acree TE, Lee CY (1969) Sweet taste of D and L-sugars and amino-acids and the steric nature of their chemo-receptor site. Nature 221(180):555–556

    CAS  Google Scholar 

  • Spadaccini R, Trabucco F, Saviano G, Picone D, Crescenzi O, Tancredi T, Temussi PA (2003) The mechanism of interaction of sweet proteins with the T1R2-T1R3 receptor: evidence from the solution structure of G16A-MNEI. J Mol Biol 328(3):683–692

    CAS  Google Scholar 

  • Stone H, Oliver SM (1969) Measurement of the relative sweetness of selected sweeteners and sweeteners mixtures. J Food Sci 34:215–222

    CAS  Google Scholar 

  • Tancredi T, Pastore A, Salvadori S, Esposito V, Temussi PA (2004) Interaction of sweet proteins with their receptor. A conformational study of peptides corresponding to loops of brazzein, monellin and thaumatin. Eur J Biochem 271(11):2231–2240

    CAS  Google Scholar 

  • Tinti J-M, Nofre C (1991a) Design of sweeteners: a rational approach. In: Walters DE, Orthoefer FT, DuBois GE (eds) Sweeteners: discovery, molecular design, and chemoreception. American Chemical Society, Washington, DC, USA, pp 88–99

    Google Scholar 

  • Tinti J-M, Nofre C (1991b) Why does a sweetener taste sweet? A new model. In: Walters DE, Orthoefer FT, DuBois GE (eds) Sweeteners: discovery, molecular design, and chemoreception. American Chemical Society, Washington, DC, USA, pp 209–213

    Google Scholar 

  • Tinti JM, Durozard D, Nofre C (1980) Sweet taste receptor: evidence of separate specific sites for COO- and NO2/CN groups in sweeteners. Naturwissenschaften 67(4)193–194

    CAS  Google Scholar 

  • van der Heijden A (1997) Historical overview an structure-activity relationships among sweeteners. Pure Appl Chem 69(4):667–674

    Google Scholar 

  • van der Wel H, Arvidson K (1978) Qualitative psychophysical studies on the gustatory effects of sweet tasting proteins thaumatin and monellin. Chem Senses and Flavour 3(3):291–297

    Google Scholar 

  • Walters DE, Orthoefer FT, DuBois GE, American Chemical Society (1991) Sweeteners: discovery, molecular design, and chemoreception, Division of Agricultural and Food Chemistry and American Chemical Society Meeting. American Chemical Society, Washington, DC, USA

  • Witherly SA, Pangborn RM, Stern JS (1980) Gustatory responses and eating duration of obese and lean adults. Appetite 1:53–63

    Google Scholar 

  • Xu H, Staszewski L, Tang H, Adler E, Zoller M, Li X (2004) Different functional roles of T1R subunits in the heteromeric taste receptors. Proc Natl Acad Sci USA 101(39):14258–14263

    CAS  Google Scholar 

  • Zhang Y, Hoon MA, Chandrashekar J, Mueller KL, Cook B, Wu D, Zuker CS, Ryba NJ (2003) Coding of sweet, bitter, and umami tastes. Different receptor cells sharing similar signaling pathways. Cell 112(3):293–301

    CAS  Google Scholar 

  • Zhao GQ, Zhang Y, Hoon MA, Chandrashekar J, Erlenbach I, Ryba NJ, Zuker CS (2003) The receptors for mammalian sweet and umami taste. Cell 115(3):255–266

    CAS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Valerie B. Duffy, Linda M. Bartoshuk, Terry E. Acree, and the anonymous reviewers for their thoughtful comments on earlier drafts, and the Pangborn Sensory Science Scholarship Fund for their generous financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John E. Hayes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hayes, J.E. Transdisciplinary Perspectives on Sweetness. Chem. Percept. 1, 48–57 (2008). https://doi.org/10.1007/s12078-007-9003-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12078-007-9003-z

Keywords

Navigation