Skip to main content
Log in

Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form

  • Original Paper
  • Published:
Theory in Biosciences Aims and scope Submit manuscript

Abstract

Seventy-five years ago, the geneticist Richard Goldschmidt hypothesized that single mutations affecting development could result in major phenotypic changes in a single generation to produce unique organisms within animal populations that he called “hopeful monsters”. Three decades ago, Sarah P. Gibbs proposed that photosynthetic unicellular micro-organisms like euglenoids and dinoflagellates are the products of a process now called “secondary endosymbiosis” (i.e., the evolution of a chloroplast surrounded by three or four membranes resulting from the incorporation of a eukaryotic alga by a eukaryotic heterotrophic host cell). In this article, we explore the evidence for Goldschmidt’s “hopeful monster” concept and expand the scope of this theory to include the macroevolutionary emergence of organisms like Euglena and Chlorarachnion from secondary endosymbiotic events. We argue that a Neo-Goldschmidtian perspective leads to the conclusion that cell chimeras such as euglenids and dinoflagellates, which are important groups of phytoplankton in freshwater and marine ecosystems, should be interpreted as “successful monsters”. In addition, we argue that Charles Darwin had euglenoids (infusoria) in mind when he speculated on the “primordial intermediate form”, although his Proto-Euglena-hypothesis for the origin of the last common ancestor of all forms of life is no longer acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Archibald JM (2005) Jumping genes and shrinking genomes–probing the evolution of eukaryotic photosynthesis with genomics. IUBMB Life 57:539–547

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2006) Algal genomics: exploring the imprint of endosymbiosis. Curr Biol 16:R1033–R1035

    Article  PubMed  CAS  Google Scholar 

  • Archibald JM (2007) Nucleomorph genomes: structure, function, origin and evolution. Bioessays 29:302–402

    Article  Google Scholar 

  • Angelini DR, Kaufman TC (2005) Comparative developmental genetics and the evolution of arthropod body plans. Annu Rev Genet 39:95–199

    Article  PubMed  CAS  Google Scholar 

  • Akam M (1998) Hox genes, homeosis and the evolution of segment identity: no need for hopeless monsters. Int J Dev Biol 42:445–451

    PubMed  CAS  Google Scholar 

  • Albert VA, Oppenheimer DG, Lindqvis C (2002) Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci 7:297–301

    Article  PubMed  CAS  Google Scholar 

  • Arthur W (2002) The emerging conceptual framework of evolutionary developmental biology. Nature 415:757–764

    PubMed  CAS  Google Scholar 

  • Bachmann K (1983) Evolutionary genetics and the genetic control of morphogenesis in flowering plants. Evol Biol 16:157–208

    Google Scholar 

  • Bateman RM, DiMichele WA (2002) Generation and filtering major phenotypic novelties: neoGoldschmidtian saltation revisited. In: Cronk QCB, Bateman RM, Hawkins JA (eds) Developmental genetics and plant evolution. Taylor & Francis, London, pp 109–159

    Google Scholar 

  • Bhattacharya D, Yoon HS, Hackett JD (2003) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 26:50–60

    Article  Google Scholar 

  • Bowman JL, Smyth DR, Meyerowitz EM (1989) Genes directing flower development in Arabidopsis. Plant Cell 1:37–52

    Article  PubMed  CAS  Google Scholar 

  • Braun EL, Phillips N (2008) Phylogenomics and secondary plastids: a look back and a look ahead. J Phycol 44:2–6

    Article  Google Scholar 

  • Brunelle SA, Hazard ES, Sotka EE, Van Dolah FM (2007) Characterization of a Dinoflagellate crypochrome blue-light receptor with a possible role in circadian control of the cell cycle. J Phycol 43:509–518

    Article  Google Scholar 

  • Butterfield NJ (2007) Macroevolution and macroecology through deep time. Palaeontology 50:41–55

    Article  Google Scholar 

  • Carroll RL (2000) Towards a new evolutionary synthesis. Trends Ecol Evol 15:27–32

    Article  PubMed  Google Scholar 

  • Carroll SB (2001) Chance and necessity: the evolution of morphological complexity and diversity. Nature 409:1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182

    Article  PubMed  CAS  Google Scholar 

  • Cavalier-Smith T (2006) Cell evolution and Earth history: stasis and revolution. Phil Trans R Soc B 361:969–1006

    Article  PubMed  CAS  Google Scholar 

  • Carpenter R, Coen ES (1990) Floral homeotic mutations proposed by transposon-mutagenesis in Antirrhinum majus. Genes Dev 4:1483–1493

    Article  PubMed  CAS  Google Scholar 

  • Cowen R (2000) History of life, 3rd edn. Blackwell, Oxford

    Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  PubMed  CAS  Google Scholar 

  • Darwin C (1872) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 6th edn. John Murray, London

    Google Scholar 

  • Dietrich MR (2000) From hopeful monsters to homeotic effects: Richard Goldschmidt’s integration of development, evolution and genetics. Am Zool 40:738–747

    Article  Google Scholar 

  • Dietrich MR (2003) Richard Goldschmidt: hopeful monsters and other ‘heresies’. Nature Rev Genet 4:68–74

    Article  CAS  Google Scholar 

  • Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257

    Article  PubMed  CAS  Google Scholar 

  • Ehrenberg CG (1838) Die Infusionsthierchen als Vollkommene Organismen. Ein Blick in das tiefere organische Leben der Natur. Leopold Voss, Leipzig

    Google Scholar 

  • Eldredge N (1989) Macroevolutionary dynamics. Species, niches, and adaptive peaks. McGraw-Hill, New York

    Google Scholar 

  • Eldredge N (2008) The early evolution of punctuated equilibria. Evo Edu Outreach 1:107–113

    Article  Google Scholar 

  • Embly TM, Martin W (2006) Eukaryotic evolution: changes and challenges. Nature 440:623–630

    Article  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Knoll AH (eds) (2007) Evolution of primary producers in the sea. Elsevier, Amsterdam

  • Fröhlich MW (2003) An evolutionary scenario for the origin of flowers. Nature Rev Genet 4:559–566

    Article  Google Scholar 

  • Galen C (1996) Rates of floral evolution: Adaptation to bumblebee pollination in an alpine wildflower Polemonium viscosum. Evolution 50:120–125

    Article  Google Scholar 

  • Garcia-Bellido A (1983) Comparative anatomy of cuticular patterns in the genus Drosophila. In: Godwin BC, Holder N, Wylie CC (eds) Development and evolution. Cambridge University Press, Cambridge, pp 227–255

    Google Scholar 

  • Geitler L (1930) Ein grünes Filarplasmodium und andere neue Protisten. Arch Protistenkunde 69:615–637

    Google Scholar 

  • Geus A, Höxtermann E (Hg) (2007) Evolution durch Kooperation und Integration. Zur Entstehung der Endosymbiosetheorie in der Zellbiologie. Basilisken-Presse, Marburg

  • Gibbs SP (1978) The chloroplast of Euglena may have evolved from symbiotic green algae. Can J Bot 56:2883–2889

    Article  Google Scholar 

  • Gibbs SP (2006) Looking at life: from binocular to the electron microscope. Annu Rev Plant Biol 57:1–17

    Article  PubMed  CAS  Google Scholar 

  • Gilbert SF, Levit GS (2007) The national roots of evo-devo. Theory Biosci 126:115–116

    Article  PubMed  CAS  Google Scholar 

  • Gilson PR, Su V, Slamovits CH, Reith ME, Keeling PJ, McFadden GI (2006) Complete nucleotide sequence of the chlorarachinophyte nucleomorph: nature’s smallest nucleus. Proc Natl Acad Sci USA 103:9566–9671

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt R (1933) Some aspects of evolution. Science 78:539–547

    Article  PubMed  Google Scholar 

  • Goldschmidt R (1940) The material basis of evolution. Yale University Press, New Haven

    Google Scholar 

  • Gottlieb LD (1984) Genetic and morphological evolution in plants. Am Nat 123:689–709

    Article  Google Scholar 

  • Gould SJ (1977) The return of hopeful monsters. Nat Hist 86:24–30

    Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Harvard University Press, Cambridge

    Google Scholar 

  • Graham LE, Wilcox LM (2000) Algae. Prentice-Hall, New Jersey

    Google Scholar 

  • Grzebyk D, Schofield O, Vetriani C, Falkowski PG (2003) The mesozoic radiation of eukaryotic algae: the portable plastid hypothesis. J Phycol 39:259–267

    CAS  Google Scholar 

  • Hackett DJ, Anderson DM, Erdner DL, Bhattacharya D (2004) Dinoflagellates: a remarkable evolutionary experiment. Am J Bot 91:1523–1534

    Article  CAS  Google Scholar 

  • Haeckel E (1904) Kunstformen der Natur. Bibliographisches Institut Leipzig, Wien

    Google Scholar 

  • Hilu KW (1983) The role of single-gene mutations in the evolution of flowering plants. Evol Biol 16:97–128

    Google Scholar 

  • Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415:1047–1051

    Article  PubMed  CAS  Google Scholar 

  • Jackson RC, Dimas CT (1981) Experimental evidence for systematic placement of the Haplopappus phyllocephalus complex. Syst Bot 6:8–14

    Article  Google Scholar 

  • Junker T (2004) Die zweite Darwinsche Revolution. Geschichte des Synthetischen Darwinismus in Deutschland 1924 bis 1950. Basilisken-Presse, Marburg

    Google Scholar 

  • Keeling PJ (2004) Diversity and evolutionary history of plastids and their hosts. Am J Bot 91:1481–1493

    Article  Google Scholar 

  • Kimura M (1962) On the probability of fixation of mutant genes in populations. Genetics 47:713–719

    PubMed  CAS  Google Scholar 

  • Knoll AH (2003) Life on a young planet: The first billion years of evolution on earth. Princeton University Press, Princeton

    Google Scholar 

  • Koorneef M, van Eden J, Hanhart CJ, Stam P, Braaksma FJ, Feenstra WJ (1983) Linkage map of Arabidopsis thaliana. J Hered 74:265–272

    Google Scholar 

  • Kutschera U (2002) Bacterial colonization of sunflower cotyledons during seed germination. J Appl Bot 76:96–98

    Google Scholar 

  • Kutschera U (2007) Plant-associated methylobacteria as co-evolved phytosymbionts: a hypothesis. Plant Signal Behav 2:74–78

    Google Scholar 

  • Kutschera U (2008) Evolutionsbiologie. 3. Auflage. Verlag Eugen Ulmer, Stuttgart

  • Kutschera U, Niklas KJ (2004) The modern theory of biological evolution: an expanded synthesis. Naturwissenschaften 91:255–276

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2005) Endosymbiosis, cell evolution, and speciation. Theory Biosci 124:1–24

    Article  PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2006) Photosynthesis research on yellowtops: macroevolution in progress. Theory Biosci 125:81–92

    PubMed  CAS  Google Scholar 

  • Kutschera U, Niklas KJ (2007) The epidermal-growth-control theory of stem elongation: an old and a new perspective. J Plant Physiol 164:1395–1409

    Article  PubMed  CAS  Google Scholar 

  • Leander BS (2004) Did trypanosomatid parasites have photosynthetic ancestors? Trends Microbiol 12: 251–258

    Article  PubMed  CAS  Google Scholar 

  • Leander BS, Esson HJ, Breglia SA (2007) Macroevolution of complex cytoskeletal systems in euglenids. Bioessays 29:987–1000

    Article  PubMed  Google Scholar 

  • Leitch AR, Leitch IJ (2007) Genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  Google Scholar 

  • Maier U-G, Douglas SE, Cavalier-Smith T (2000) The nucleomorph genomes of cryptophytes and chlorarachinophytes. Protist 151:103–109

    Article  PubMed  CAS  Google Scholar 

  • Margulis L, Schwartz KV (1998) Five kingdoms. An illustrated guide to the phyla of life on earth, 3rd edn. WH Freeman, New York

    Google Scholar 

  • Martin W, Hoffmeister M, Rotte C, Henze K (2001) An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes), and their heterotrophic lifestyle. Biol Chem 382:1521–1539

    Article  PubMed  CAS  Google Scholar 

  • Martin W (2003) Gene transfer from organelles to the nucleus: Frequent and in big chunks. Proc Natl Acad Sci USA 100:8612–8614

    Article  PubMed  CAS  Google Scholar 

  • Martin-Gonzalez A, Wierzchos JM, Gutierrez JC, Alonso J, Ascaso C (2008) Morphological stasis of protists in lower Cretaceous amber. Protist 159:251–257

    Article  PubMed  Google Scholar 

  • Martel CM, Flynn KJ (2008) Morphological controls on cannibalism in a planktonic marine phagotroph. Protist 159:41–51

    Article  PubMed  Google Scholar 

  • Mayr E, Provine,WB (eds) (1980) The evolutionary synthesis. Harvard University Press, Cambridge

  • McFadden G (2001) Primary and secondary endosymbiosis and the origin of plastids. J Phycol 37:951–959

    Article  Google Scholar 

  • McFadden G, Gilson P (1995) Something borrowed, something green: Lateral transfer of chloroplasts by secondary endosymbiosis. Trends Ecol Evol 10:12–17

    Article  Google Scholar 

  • Merezhkowsky C (1905) Über Nature und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralblatt 25: 593–604, 689–691

    Google Scholar 

  • Merezhkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenese, einer neuen Lehre von der Entstehung der Organismen. Biol Centralblatt 30: 278–288, 289–303, 321–347, 353–367

  • Moreira D, Philippe H (2001) Sure facts and open questions about the origin and evolution of photosynthetic plastids. Res Microbiol 152:771–787

    Article  PubMed  CAS  Google Scholar 

  • Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, Chicago

    Google Scholar 

  • Niklas KJ (2000) The evolution of plant body plans–a biomechanical perspective. Ann Bot 85:411–438

    Article  Google Scholar 

  • Niklas KJ (2004) The walls that bind the tree of life. Bioscience 54:831–841

    Article  Google Scholar 

  • Nowack ECM, Melkonian M, Glockner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by Eukaryotes. Curr Biol 18:410–418

    Article  PubMed  CAS  Google Scholar 

  • Okamoto N, Inouye I (2005) A secondary symbiosis in progress? Science 310:287

    Article  PubMed  CAS  Google Scholar 

  • Reif W-E, Junker T, Hoßfeld U (2000) The synthetic theory of evolution: general problems and the German contribution to the synthesis. Theory Biosci 119:41–91

    Google Scholar 

  • Rudall PJ, Bateman R (2003) Evolutionary change in flowers and inflorescences: evidence from naturally occurring terata. Trends Plant Sci 8:76–92

    Article  PubMed  CAS  Google Scholar 

  • Scherp P, Grotha R, Kutschera U (2001) Occurrence and phylogenetic significance of cytokinesis-related callose in green algae, bryophytes, ferns and seed plants. Plant Cell Rep 20:143–149

    Article  CAS  Google Scholar 

  • Singh BB, Jha AN (1978) Abnormal differentiation of floral parts in a mutant strain of soybean. J Hered 69:143–144

    Google Scholar 

  • Sitte P (1989) Phylogenetische Aspekte der Zellevolution. Biol Rundschau 28:1–18

    Google Scholar 

  • Simons AM (2002) The continuity of microevolution and macroevolution. J Evol Biol 15:688–701

    Article  Google Scholar 

  • Streble H, Krauter D (1973) Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Süßwassers. 4. Auflage. Frankh’sche Verlageshandlung, Stuttgart

  • Surek B, Melkonian M (1986) A cryptic cytostome is present in Euglena. Protoplasma 133:39–49

    Article  Google Scholar 

  • Takahashi F, Okabe Y, Nakada T, Sekimoto H, Ito M, Kataoka H, Nozaki H (2007) Origins of the secondary plastids of Euglenomorpha and Chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO. J Phycol 43:1302–1309

    Article  CAS  Google Scholar 

  • Theißen G (2006) The proper place of hopeful monsters in evolutionary biology. Theory Biosci 124:349–369

    Article  PubMed  Google Scholar 

  • Triemer RE, Linton E, Shin W, Nudelman A, Monfils A, Bennett M, Brosnan S (2006) Phylogeny of the Euglenales based upon combined SSU and LSU rDNA sequence comparisons and description of Discoplastis Gen. nov. (Euglenophyta). J Phycol 42:731–740

    Article  Google Scholar 

  • Wallin IE (1927) Symbionticism and the origin of species. Bailliere, Tindall & Cox, London

    Google Scholar 

  • Wolken JJ (1967) Euglena. An experimental organism for biochemical and biophysical studies, 2nd edn. Meredith Publishing, New York

    Google Scholar 

  • Wright S (1982) The shifting balance theory and macroevolution. Annu Rev Genet 16:1–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This article is dedicated to Prof. Sarah P. Gibbs, who discovered the principle of secondary endosymbiosis 30 years ago. The cooperation of the authors is supported by the Alexander von Humboldt-Stiftung (AvH), Bonn (Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Kutschera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kutschera, U., Niklas, K.J. Macroevolution via secondary endosymbiosis: a Neo-Goldschmidtian view of unicellular hopeful monsters and Darwin’s primordial intermediate form. Theory Biosci. 127, 277–289 (2008). https://doi.org/10.1007/s12064-008-0046-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12064-008-0046-8

Keywords

Navigation