Skip to main content
Log in

The effect of hypothetical diproton stability on the universe

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

By calculation of the proton-proton capture cross-section, it is shown that the existence of a bound diproton state would not lead to significant production of diprotons during big bang nucleosynthesis, contrary to popular belief. In typical stellar interiors, the stability of diprotons would lead to a reaction pathway for converting protons to deuterons perhaps ∼1010 times faster than the usual weak capture reaction. This would prevent stars of the familiar hot, dense type from occurring in the universe. However, if diproton stability is achieved by an increase in the low-energy strong coupling, gs, then stars with temperatures and densities sufficiently reduced so as to offset the faster reaction pathway to deuterium will appear to meet elementary stability criteria. The claim that there is a fine-tuned, anthropic upper bound to the strong force which ensures diproton instability therefore appears to be unfounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agrawal, V., Barr, S. M., Donoghue, J. F., Seckel, D. 1998a, Anthropic considerations in multiple-domain theories and the scale of electroweak symmetry breaking, Phys. Rev. Lett., 80, 1822.

    Article  ADS  Google Scholar 

  • Agrawal, V., Barr, S. M., Donoghue, J. F., Seckel, D. 1998b, The anthropic principle and the mass scale of the standard model, Phys. Rev. D, 57, 5480.

    Article  ADS  Google Scholar 

  • Barrow, J. D., Tipler, F. J. 1986, The Anthropic Cosmological Principle, Oxford University Press.

  • Blatt, J. M., Weisskopf, V. F. 1952, Theoretical Nuclear Physics, John Wiley.

  • Carr, B. J., Rees, M. J. 1979, The anthropic principle and the structure of the physical world, Nature, 278, 605.

    Article  ADS  Google Scholar 

  • Carter, B. 1974, Confrontation of cosmological theories with observation: Proc. IAU Symp. 63, 291, (ed.) Longair, M. S., Dordrecht, Reidel.

    Google Scholar 

  • Davies, P. C. W. 1982, The Accidental Universe, Cambridge University Press.

  • Davies, P. C. W. 2004, Multiverse cosmological models, Mod. Phys. Lett. A, 19, 727.

    Article  ADS  Google Scholar 

  • Davies, P. C. W. 1972, Time variation of the coupling constants, J. Phys. A, 5, 1296.

    Article  ADS  Google Scholar 

  • Dine, M. 2003, Is there a string theory landscape: some cautionary remarks, Preprint hep-th/0402101.

  • Dyson, F. J. 1971, Energy in the universe, Sci. Am., 225, 51.

    Article  ADS  Google Scholar 

  • Evans, R. D. 1955, The Atomic Nucleus, McGraw-Hill.

  • Guth, A. H. 2007, Eternal inflation and its implications, J. Phys. A: Math. Theor., 40, 6811.

    Article  ADS  MathSciNet  Google Scholar 

  • Harnik, R., Kribs, G. D., Perez, G. 2006, A universe without weak interactions, Phys. Rev. D, 74, 035006.

    Google Scholar 

  • Hoffman, R. 2002, Strong and Electromagnetic Reaction Rates 2002, Lawrence Livermore National Laboratory, Nuclear Theory & Modelling Group (http://www-phys.llnl.gov/Research/RRSN/semr/light_reacs.html).

  • Hogan, C. J. 2000, Why the universe is just so, Rev. Mod. Phys., 72, 1149.

    Article  ADS  Google Scholar 

  • Hogan, C. J. 2006, Nuclear astrophysics of worlds in the string landscape, Phys. Rev. D, 74, 123,514.

    Google Scholar 

  • Linde, A. 1994, Sci. Am., 271, 32.

    Article  ADS  Google Scholar 

  • Linde, A. 2007a, Sinks in the landscape, Boltzmann brains, and the cosmological constant problem, J. Cosmol. Astropart. Phys., JCAP, 0701, 022.

    Article  ADS  MathSciNet  Google Scholar 

  • Linde, A. 2007b, Inflationary cosmology, Preprint hep-th/0705.0164.

  • Martel, H., Shapiro, P. R., Weinberg, S. 1998, Likely values of the cosmological constant, Astrophys. J., 492, 29.

    Article  ADS  Google Scholar 

  • Rees, M. J. 1999, Just Six Numbers, Weidenfeld & Nicolson, London.

    Google Scholar 

  • Smith, M. 1988, Caughlan & Fowler 1988 Thermonuclear Reaction Rates, Oak Ridge National Laboratory (http://www.phy.ornl.gov/astrophysics/data/cf88/directory.html).

  • Susskind, L. 2003, The anthropic landscape of string theory, Preprint hep-th/0302219.

  • Tegmark, M., Aguirre, A., Rees, M. J., Wilczek, F. 2006, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D, 73, 023505.

    Google Scholar 

  • Weinberg, S. 2007, Living in the multiverse, In: Universe or Multiverse (ed.) Carr, B., Cambridge University Press, and Preprint hep-th/0511037.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. W. Bradford.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradford, R.A.W. The effect of hypothetical diproton stability on the universe. J Astrophys Astron 30, 119–131 (2009). https://doi.org/10.1007/s12036-009-0005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12036-009-0005-x

Key words

Navigation