Skip to main content
Log in

Expression of MUC1 and CD176 (Thomsen-Friedenreich antigen) in Papillary Thyroid Carcinomas

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

The incidence of thyroid cancer has appeared as an increasing trend globally, especially in Asian countries. In this study, the expression of mucin-1 (MUC1) and Thomsen-Friedenreich antigen, Galβ1-3GalNAcα1-R (CD176) was investigated by immunohistochemistry in papillary thyroid carcinomas (PTCs), which accounts for approximately 80 % of all thyroid cancer. We found that 78 % of PTC overexpressed MUC1. Importantly, we observed firstly that CD176 was expressed in 63 % of PTC, but was faintly or not expressed in normal thyroid tissues and benign thyroid disease tissues, indicating that CD176 is also a tumour-associated antigen for PTCs. Moreover, expression of CD176 was strongly correlated with MUC1 by immunohistochemical staining in PTCs. Furthermore, we used the immunochemical method to confirm that MUC1 is a common and main carrier of CD176 in PTCs. Our data demonstrated that MUC1 and CD176 might be promising biomarkers for thyroid cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Davies L, Welch HG. Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295:2164–2167, 2006.

    Article  CAS  PubMed  Google Scholar 

  2. Hodgson NC, Button J, Solorzano CC. Thyroid cancer: is the incidence still increasing? Ann Surg Oncol 11:1093–1097, 2004.

    Article  PubMed  Google Scholar 

  3. Haselkorn T, Bernstein L, Preston-Martin S, Cozen W, Mack WJ. Descriptive epidemiology of thyroid cancer in Los Angeles County, 1972–1995. Cancer Causes Control 11:163–170, 2000.

    Article  CAS  PubMed  Google Scholar 

  4. Burgess JR, Tucker P. Incidence trends for papillary thyroid carcinoma and their correlation with thyroid surgery and thyroid fine-needle aspirate cytology. Thyroid 16:47–53, 2006.

    Article  PubMed  Google Scholar 

  5. Hayes DF, Zurawski VR, Kufe DW. Comparison of circulating CA15-3 and carcinoembryonic antigen in patients with breast cancer. J Clin Oncol 4:1542–1550, 1986.

    CAS  PubMed  Google Scholar 

  6. Safi F, Kohler I, Rottinger E, Berger H-G. The value of the tumour marker CA153-3 in diagnosing and monitoring breast cancer. Cancer 68:574–582, 1991.

    Article  CAS  PubMed  Google Scholar 

  7. Siragusa M, Zerilli M, Iovino F, et al. MUC1 oncoprotein promotes refractoriness to chemotherapy in thyroid cancer cells. Cancer Res 67:5522–5530, 2007.

    Article  CAS  PubMed  Google Scholar 

  8. Singh R, Bandyopadhyay D. MUC1: a target molecule for cancer therapy. Cancer Biol Ther 6: 481–486, 2007.

    Article  CAS  PubMed  Google Scholar 

  9. Beatty PL, Finn OJ. Preventing cancer by targeting abnormally expressed self-antigens: MUC1 vaccines for prevention of epithelial adenocarcinomas. Ann N Y Acad Sci 1284:52–56, 2013.

    Article  CAS  PubMed  Google Scholar 

  10. Wreesmann VB, Sieczka EM, Socci ND, et al. Genome-wide profiling of papillary thyroid cancer identifies MUC1 as an independent prognostic marker. Cancer Res 64: 3780–3789, 2004.

    Article  CAS  PubMed  Google Scholar 

  11. Patel KN, Maghami E, Wreesmann VB, Shaha AR, Shah JP. Ghossein R, Singh B. MUC1 plays a role in tumor maintenance in aggressive thyroid carcinomas. Surgery 138: 994–1001, 2005.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Morari EC, Silva JR, Guilhen AC, et al. Muc-1 expression may help characterize thyroid nodules but does not predict patients’ outcome. Endocr Pathol 21: 242–249, 2010.

    Article  CAS  PubMed  Google Scholar 

  13. Baek SK, Woo JS, Kwon SY, Lee SH, Chae YS, Jung KY. Prognostic significance of the MUC1 and MUC4 expressions in thyroid papillary carcinoma. Laryngoscope 117: 911–916, 2007.

    Article  CAS  PubMed  Google Scholar 

  14. Weiss M, Baruch A, Keydar I, Wreschner DH. Preoperative diagnosis of thyroid papillary carcinoma by reverse transcriptase polymerase chain reaction of the MUC1 gene. Int J Cancer 66:55–59, 1996.

    Article  CAS  PubMed  Google Scholar 

  15. Abrosimov A, Saenko V, Meirmanov S, et al. The cytoplasmic expression of MUC1 in papillary thyroid carcinoma of different histologicalvariants and its correlation with cyclin D1 overexpression. Endocr Pathol 18: 68–75, 2007.

    Article  CAS  PubMed  Google Scholar 

  16. Magro G, Schiappacassi M, Perissinotto D, Corsaro A, et al. Differential expression of mucins 1–6 in papillary thyroid carcinoma: evidence for transformation-dependent post-translational modifications of MUC1 in situ. J Pathol 200: 357–369, 2003.

    Article  CAS  PubMed  Google Scholar 

  17. Fan XN, Karsten U, Goletz S, Cao Y. Reactivity of a humanized antibody (hPankoMab) towards a tumor-related MUC1 epitope (TA-MUC1) with various human carcinomas. Pathol Res Pract 206:585–589, 2010.

    Article  CAS  PubMed  Google Scholar 

  18. He F, Li H, Li WS, Dong XH. Expression of mucin-l and beta-catenin in papillary thyroid carcinoma and the clinical significance thereof. Zhong Hua Yi Xue Za Zhi 82:257–261, 2002.

    Google Scholar 

  19. Renaud F, Gnemmi V, Devos P, Aubert S, et al. MUC1 expression in papillary thyroid carcinoma is associated with BRAF mutation and lymph node metastasis; the latter is the most important risk factor of relapse. Thyroid 24: 1375–1384, 2014.

    Article  CAS  PubMed  Google Scholar 

  20. Bieche I, Ruffet E, Zweibaum Abet et al. MUC1 mucin gene, transcripts, and protein in adenomas and papillary carcinomas of the thyroid. Thyroid 7: 725–731, 1997.

    Article  CAS  PubMed  Google Scholar 

  21. Gendler SJ. MUC1, the renaissance molecule. J Mammary Gland Biol Neoplasia 6:339–53, 2001.

    Article  CAS  PubMed  Google Scholar 

  22. Ligtenberg MJ, Kruijshaar L, Buijs F, van Meijer M, Litvinov SV, Hilkens J. Cell-associated episialin is a complex containing two proteins derived from a common precursor. J Biol Chem 267: 6171–6177, 1992.

    CAS  PubMed  Google Scholar 

  23. Cao Y, Blohm D, Ghadimi BM, Karsten U et al. Mucins (MUC1 and MUC3) of gastrointestinal and breast epithelia reveal different and heterologous tumour associated aberrations in glycosylation. J Histochem Cytochem 45:1547–1557, 1997.

    Article  CAS  PubMed  Google Scholar 

  24. Cao Y, Schlag PM, Karsten U. Immunodetection of epithelial mucin (MUC1, MUC3) and mucin-associated glycotopes (TF, Tn, and sialosyl-Tn) in benign and malignant lesions of colonic epithelium: apolar localization corresponds to malignant transformation. Virchows Arch 431:159–166, 1997.

    Article  CAS  PubMed  Google Scholar 

  25. Goletz S, Cao Y, Danielcyk A, Ravn P, Schoeber U and Karsten U. Thomsen-Friedenreich antigen: the ‘hidden’ tumour antigen. Adv Exp Med Biol 535: 147–162, 2003.

    Article  CAS  PubMed  Google Scholar 

  26. Cao Y, Merling A, Karsten U, Schwartz-Albiez R. Expression of Thomsen-Friedenreich-related carbohydrate antigens on human leukemia cells. In: Leucocyte Typing VII (eds. D. Mason et al.), Oxford University Press, Oxford, 204–205, 2002.

    Google Scholar 

  27. Cao Y, Stosiek P, Springer GF and Karsten U. Thomsen-Friedenreich-related carbohydrate antigens in normal adult human tissues: a systematic and comparative study. Histochem Cell Biol 106:197–207, 1996.

    Article  CAS  PubMed  Google Scholar 

  28. Springer GF. Immunoreactive T and Tn epitopes in cancer diagnosis, prognosis, and immunotherapy. J Mol Med 75: 594–602, 1997.

    Article  CAS  PubMed  Google Scholar 

  29. Lin WM, Karsten U, Goletz S, Cheng RC, Cao Y. Expression of CD176 (Thomsen-Friedenreich antigen) on lung, breast and liver cancer-initiating cells. Int J Exp Pathol 92:97–105, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Cao Y, Karsten UR, Liebrich W, Haensch W, Springer GF and Schlag PM. Expression of Thomsen-Friedenreich-related antigens in primary and metastatic colorectal carcinomas, a reevaluation. Cancer 76: 1700–1708, 1995.

    Article  CAS  PubMed  Google Scholar 

  31. Glinsky VV, Glinsky GV, Rittenhouse-Olson K, et al. The role of Thomsen-Friedenreich antigen in adhesion of human breast and prostate cancer cells to the endothelium. Cancer Res 61:4851–4857, 2001.

    CAS  PubMed  Google Scholar 

  32. Heimburg J, Yan J, Morey S, et al. Inhibition of spontaneous breast cancer metastasis by anti-Thomsen-Friedenreich antigen monoclonal antibody JAA-F11. Neoplasia 8: 939–948, 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Yi B, Zhang M, Schwartz-Albiez R, Cao Y. Mechanisms of the apoptosis induced by CD176 antibody on human leukemic cells. Int J Oncol 38:1565–1573, 2011.

    PubMed  Google Scholar 

  34. Yi B, Zhang Z, Zhang M, Schwartz-Albiez R, Cao Y. CD176 (Thomsen-Friedenreich antigen) anti-serum treatment leads to a therapeutic response in a murine model of leukemia. Oncol Rep 30:1841–1847, 2013.

    CAS  PubMed  Google Scholar 

  35. Watson T. Outlook lung cancer: immunotherapy—chemical tricks. Nature 513:S10–S11, 2014.

    Article  Google Scholar 

  36. Cao Y, Karsten U, Otto G, Bannasch P. Expression of MUC1, Thomsen-Friedenreich antigen, Tn, sialosyl-Tn, and 2,6-linked sialic acid in hepatocellular carcinomas and preneoplastic hepatocellular lesions. Virchows Arch 434:503–509, 1999.

    Article  CAS  PubMed  Google Scholar 

  37. Cao Y, Merling A, Karsten U, Goletz S, Punzel M, Butschak G, Schwartz-Albiez R. Expression of CD175 (Tn), CD175s (sialosyl-Tn), and CD176 (Thomsen-Friedenreich antigen) on malignant human hematopoietic cells. Int J Cancer 123: 89–99, 2008.

    Article  CAS  PubMed  Google Scholar 

  38. Scognamiglio T, Hyjek E, Kao J, Chen YT. Diagnostic usefulness of HBME-1, galectin-3, CK19 and CITED1 and evaluation of their expression in encapsulated lesions with questionable features of papillary thyroid carcinoma. Am J Clin Pathol 126:700–708, 2006.

    Article  CAS  PubMed  Google Scholar 

  39. Baldus SE, Hanisch F-G, Kotlarek GM, Zirbes TK, Thiele J, Isenberg J, Karsten UR, Devine PL, Dienes HP. Coexpression of MUC1 mucin peptide core and the Thomsen-Friedenreich antigen in colorectal neoplasms. Cancer 82: 1019–1027, 1998.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the grants from National Natural Science Foundation of China (No. 81072563).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Cao or Ruo-chuan Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Xx., Zhao, B., Diao, C. et al. Expression of MUC1 and CD176 (Thomsen-Friedenreich antigen) in Papillary Thyroid Carcinomas. Endocr Pathol 26, 21–26 (2015). https://doi.org/10.1007/s12022-015-9356-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-015-9356-9

Keywords

Navigation