Skip to main content

Advertisement

Log in

Mechanotransduction by TRP Channels: General Concepts and Specific Role in the Vasculature

  • Review Article
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Transient receptor potential (TRP) ion channel superfamily is involved in sensing and transmission of a broad variety of external or internal stimuli, including but not limited to mechanical stress. Based on homology analysis, genetic and molecular studies have recently identified TRP channels in different tissues, comprising blood vessels. In invertebrates, many TRP channels including five TRPV channels identified in Caenorhabditis elegans and two in Drosophila have been implicated in mechanosensory behaviors as molecular basis of volume regulation, hearing and touch sensitivity. Consistently, in mammals many TRP family members such as TRPC1, TRPC3, TRPC6, TRPM4, TRPM7, TRPN1, TRPA1, TRPY1, TRPP1, TRPP2, and notably, TRPV1, TPRV2 as well as TRPV4 have been reported to be involved in mechanotransduction. This review summarizes recent and at times controversial findings on the role and regulation of TRP channels in mechanotransduction. Specifically, we highlight the relevance of TRPV channels in vascular regulation and focus on TRPV4 in the vascular system of the lung, which is constantly exposed to a unique combination of circumferential and longitudinal strains. In light of our observation in intact pulmonary microvessels that mechanical stress induced Ca2+ signaling in endothelial cells is closely related to TRPV4 activity, we postulate that TRPV4 plays a critical role in lung vascular mechanotransduction. The progress in this rapidly expanding field may allow for the identification of new molecular targets and the development of new therapeutic approaches in a number of intractable diseases related to mechanical stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Davies, P. F., Barbee, K. A., Volin, M. V., Robotewskyj, A., Chen, J., Joseph, L., et al. (1997). Spatial relationships in early signaling events of flow-mediated endothelial mechanotransduction. Annual Review of Physiology, 59, 527–549.

    PubMed  Google Scholar 

  2. Davies, P. F., Spaan, J. A., & Krams, R. (2005). Shear stress biology of the endothelium. Annals of Biomedical Engineering, 33, 1714–1718.

    PubMed  Google Scholar 

  3. Davis, M. J., & Hill, M. A. (1999). Signaling mechanisms underlying the vascular myogenic response. Physiological Reviews, 79, 387–423.

    PubMed  Google Scholar 

  4. Ali, M. H., & Schumacker, P. T. (2002). Endothelial responses to mechanical stress: Where is the mechanosensor? Critical Care Medicine, 30, S198–S206.

    PubMed  Google Scholar 

  5. Sharif-Naeini, R., Dedman, A., Folgering, J. H., Duprat, F., Patel, A., Nilius, B., et al. (2008). TRP channels and mechanosensory transduction: Insights into the arterial myogenic response. Pflugers Archiv, 456, 529–540.

    PubMed  Google Scholar 

  6. Christensen, A. P., & Corey, D. P. (2007). TRP channels in mechanosensation: Direct or indirect activation? Nature Reviews. Neuroscience, 8, 510–521.

    PubMed  Google Scholar 

  7. Pedersen, S. F., & Nilius, B. (2007). Transient receptor potential channels in mechanosensing and cell volume regulation. Methods in Enzymology, 428, 183–207.

    PubMed  Google Scholar 

  8. Liedtke, W., & Kim, C. (2005). Functionality of the TRPV subfamily of TRP ion channels: Add mechano-TRP and osmo-TRP to the lexicon! Cellular and Molecular Life Sciences, 62, 2985–3001.

    PubMed  Google Scholar 

  9. Mutai, H., & Heller, S. (2003). Vertebrate and invertebrate TRPV-like mechanoreceptors. Cell Calcium, 33, 471–478.

    PubMed  Google Scholar 

  10. O’Neil, R. G., & Heller, S. (2005). The mechanosensitive nature of TRPV channels. Pflugers Archiv, 451, 193–203.

    PubMed  Google Scholar 

  11. Tobin, D. M., & Bargmann, C. I. (2004). Invertebrate nociception: Behaviors, neurons and molecules. Journal of Neurobiology, 61, 161–174.

    PubMed  Google Scholar 

  12. Kahn-Kirby, A. H., & Bargmann, C. I. (2006). TRP channels in C. elegans. Annual Review of Physiology, 68, 719–736.

    PubMed  Google Scholar 

  13. Liedtke, W. (2008). Molecular mechanisms of TRPV4-mediated neural signaling. Annals of the New York Academy of Sciences, 1144, 42–52.

    PubMed  Google Scholar 

  14. Bergel, D. H., Caro, C. G., & Seed, W. A. (1967). Asymmetrical transmission of pressure waves in the pulmonary vascular system of the dog. Journal of Physiology, 188, 41P–42P.

    PubMed  Google Scholar 

  15. Presson, R. G., Jr., Baumgartner, W. A., Jr., Peterson, A. J., Glenny, R. W., & Wagner, W. W., Jr. (2002). Pulmonary capillaries are recruited during pulsatile flow. Journal of Applied Physiology, 92, 1183–1190.

    PubMed  Google Scholar 

  16. Wagner, W. W., Jr., Todoran, T. M., Tanabe, N., Wagner, T. M., Tanner, J. A., Glenny, R. W., et al. (1999). Pulmonary capillary perfusion: Intra-alveolar fractal patterns and interalveolar independence. Journal of Applied Physiology, 86, 825–831.

    PubMed  Google Scholar 

  17. Kuebler, W. M., Ying, X., & Bhattacharya, J. (2002). Pressure-induced endothelial Ca2+ oscillations in lung capillaries. American Journal of Physiology Lung Cellular and Molecular Physiology, 282, L917–L923.

    PubMed  Google Scholar 

  18. Sadurski, R., Tsukada, H., Ying, X., Bhattacharya, S., & Bhattacharya, J. (1994). Diameters of juxtacapillary venules determined by oil-drop method in rat lung. Journal of Applied Physiology, 77, 718–725.

    PubMed  Google Scholar 

  19. Sun, R. Y., Nieman, G. F., Hakim, T. S., & Chang, H. K. (1987). Effects of lung volume and alveolar surface tension on pulmonary vascular resistance. Journal of Applied Physiology, 62, 1622–1626.

    PubMed  Google Scholar 

  20. Folgering, J. H., Sharif-Naeini, R., Dedman, A., Patel, A., Delmas, P., & Honore, E. (2008). Molecular basis of the mammalian pressure-sensitive ion channels: Focus on vascular mechanotransduction. Progress in Biophysics and Molecular Biology, 97, 180–195.

    PubMed  Google Scholar 

  21. Helmke, B. P., & Davies, P. F. (2002). The cytoskeleton under external fluid mechanical forces: Hemodynamic forces acting on the endothelium. Annals of Biomedical Engineering, 30, 284–296.

    PubMed  Google Scholar 

  22. Ingber, D. E. (1997). Tensegrity: The architectural basis of cellular mechanotransduction. Annual Review of Physiology, 59, 575–599.

    PubMed  Google Scholar 

  23. Tseng, H., Peterson, T. E., & Berk, B. C. (1995). Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells. Circulation Research, 77, 869–878.

    PubMed  Google Scholar 

  24. Lansman, J. B., Hallam, T. J., & Rink, T. J. (1987). Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature, 325, 811–813.

    PubMed  Google Scholar 

  25. Schwarz, G., Droogmans, G., & Nilius, B. (1992). Shear stress induced membrane currents and calcium transients in human vascular endothelial cells. Pflugers Archiv, 421, 394–396.

    PubMed  Google Scholar 

  26. Schwarz, G., Callewaert, G., Droogmans, G., & Nilius, B. (1992). Shear stress-induced calcium transients in endothelial cells from human umbilical cord veins. Journal of Physiology, 458, 527–538.

    PubMed  Google Scholar 

  27. Hoyer, J., Kohler, R., Haase, W., & Distler, A. (1996). Up-regulation of pressure-activated Ca2+-permeable cation channel in intact vascular endothelium of hypertensive rats. Proceedings of the National Academy of Sciences of the United States of America, 93, 11253–11258.

    PubMed  Google Scholar 

  28. Hoyer, J., Kohler, R., & Distler, A. (1997). Mechanosensitive cation channels in aortic endothelium of normotensive and hypertensive rats. Hypertension, 30, 112–119.

    PubMed  Google Scholar 

  29. Kohler, R., Schonfelder, G., Hopp, H., Distler, A., & Hoyer, J. (1998). Stretch-activated cation channel in human umbilical vein endothelium in normal pregnancy and in preeclampsia. Journal of Hypertension, 16, 1149–1156.

    PubMed  Google Scholar 

  30. Hutcheson, I. R., & Griffith, T. M. (1994). Heterogeneous populations of K+ channels mediate EDRF release to flow but not agonists in rabbit aorta. American Journal of Physiology, 266, H590–H596.

    PubMed  Google Scholar 

  31. Alevriadou, B. R., Eskin, S. G., McIntire, L. V., & Schilling, W. P. (1993). Effect of shear stress on 86Rb+ efflux from calf pulmonary artery endothelial cells. Annals of Biomedical Engineering, 21, 1–7.

    PubMed  Google Scholar 

  32. Naruse, K., & Sokabe, M. (1993). Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. American Journal of Physiology, 264, C1037–C1044.

    PubMed  Google Scholar 

  33. Naruse, K., Yamada, T., & Sokabe, M. (1998). Involvement of SA channels in orienting response of cultured endothelial cells to cyclic stretch. American Journal of Physiology, 274, H1532–H1538.

    PubMed  Google Scholar 

  34. Yang, X. C., & Sachs, F. (1989). Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science, 243, 1068–1071.

    PubMed  Google Scholar 

  35. Cosens, D. J., & Manning, A. (1969). Abnormal electroretinogram from a Drosophila mutant. Nature, 224, 285–287.

    PubMed  Google Scholar 

  36. Montell, C., & Rubin, G. M. (1989). Molecular characterization of the Drosophila trp locus: A putative integral membrane protein required for phototransduction. Neuron, 2, 1313–1323.

    PubMed  Google Scholar 

  37. Hardie, R. C., & Minke, B. (1992). The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron, 8, 643–651.

    PubMed  Google Scholar 

  38. Wong, F., Schaefer, E. L., Roop, B. C., LaMendola, J. N., Johnson-Seaton, D., & Shao, D. (1989). Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron, 3, 81–94.

    PubMed  Google Scholar 

  39. Montell, C. (2001). Physiology, phylogeny, and functions of the TRP superfamily of cation channels. Science’s STKE, 2001, RE1.

    PubMed  Google Scholar 

  40. Clapham, D. E. (2003). TRP channels as cellular sensors. Nature, 426, 517–524.

    PubMed  Google Scholar 

  41. Hoenderop, J. G., Voets, T., Hoefs, S., Weidema, F., Prenen, J., Nilius, B., et al. (2003). Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO Journal, 22, 776–785.

    PubMed  Google Scholar 

  42. Dohke, Y., Oh, Y. S., Ambudkar, I. S., & Turner, R. J. (2004). Biogenesis and topology of the transient receptor potential Ca2+ channel TRPC1. Journal of Biological Chemistry, 279, 12242–12248.

    PubMed  Google Scholar 

  43. Montell, C. (2001). An end in sight to a long TRP. Neuron, 30, 3–5.

    PubMed  Google Scholar 

  44. Vannier, B., Zhu, X., Brown, D., & Birnbaumer, L. (1998). The membrane topology of human transient receptor potential 3 as inferred from glycosylation-scanning mutagenesis and epitope immunocytochemistry. Journal of Biological Chemistry, 273, 8675–8679.

    PubMed  Google Scholar 

  45. Vazquez, G., Wedel, B. J., Kawasaki, B. T., Bird, G. S., & Putney, J. W., Jr. (2004). Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. Journal of Biological Chemistry, 279, 40521–40528.

    PubMed  Google Scholar 

  46. Vazquez, G., Wedel, B. J., Aziz, O., Trebak, M., & Putney, J. W., Jr. (2004). The mammalian TRPC cation channels. Biochimica et Biophysica Acta, 1742, 21–36.

    PubMed  Google Scholar 

  47. Sukharev, S., & Corey, D. P. (2004). Mechanosensitive channels: Multiplicity of families and gating paradigms. Science’s STKE, 2004, re4.

    PubMed  Google Scholar 

  48. Kung, C. (2005). A possible unifying principle for mechanosensation. Nature, 436, 647–654.

    PubMed  Google Scholar 

  49. Colbert, H. A., & Bargmann, C. I. (1995). Odorant-specific adaptation pathways generate olfactory plasticity in C. elegans. Neuron, 14, 803–812.

    PubMed  Google Scholar 

  50. Colbert, H. A., & Bargmann, C. I. (1997). Environmental signals modulate olfactory acuity, discrimination, and memory in Caenorhabditis elegans. Learning & Memory, 4, 179–191.

    Google Scholar 

  51. Colbert, H. A., Smith, T. L., & Bargmann, C. I. (1997). OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. Journal of Neuroscience, 17, 8259–8269.

    PubMed  Google Scholar 

  52. Tobin, D., Madsen, D., Kahn-Kirby, A., Peckol, E., Moulder, G., Barstead, R., et al. (2002). Combinatorial expression of TRPV channel proteins defines their sensory functions and subcellular localization in C. elegans neurons. Neuron, 35, 307–318.

    PubMed  Google Scholar 

  53. Kim, J., Chung, Y. D., Park, D. Y., Choi, S., Shin, D. W., Soh, H., et al. (2003). A TRPV family ion channel required for hearing in Drosophila. Nature, 424, 81–84.

    PubMed  Google Scholar 

  54. Gong, Z., Son, W., Chung, Y. D., Kim, J., Shin, D. W., McClung, C. A., et al. (2004). Two interdependent TRPV channel subunits, inactive and Nanchung, mediate hearing in Drosophila. Journal of Neuroscience, 24, 9059–9066.

    PubMed  Google Scholar 

  55. Liedtke, W., Choe, Y., Marti-Renom, M. A., Bell, A. M., Denis, C. S., Sali, A., et al. (2000). Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell, 103, 525–535.

    PubMed  Google Scholar 

  56. Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G., & Plant, T. D. (2000). OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biology, 2, 695–702.

    PubMed  Google Scholar 

  57. Wissenbach, U., Bodding, M., Freichel, M., & Flockerzi, V. (2000). Trp12, a novel Trp related protein from kidney. FEBS Letters, 485, 127–134.

    PubMed  Google Scholar 

  58. Delany, N. S., Hurle, M., Facer, P., Alnadaf, T., Plumpton, C., Kinghorn, I., et al. (2001). Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiol Genomics, 4, 165–174.

    PubMed  Google Scholar 

  59. Alvarez, D. F., King, J. A., Weber, D., Addison, E., Liedtke, W., & Townsley, M. I. (2006). Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: A novel mechanism of acute lung injury. Circulation Research, 99, 988–995.

    PubMed  Google Scholar 

  60. Yin, J., Hoffmann, J., Kaestle, S. M., Neye, N., Wang, L., Baeurle, J., et al. (2008). Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circulation Research, 102, 966–974.

    PubMed  Google Scholar 

  61. Gao, X., Wu, L., & O’Neil, R. G. (2003). Temperature-modulated diversity of TRPV4 channel gating: Activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. Journal of Biological Chemistry, 278, 27129–27137.

    PubMed  Google Scholar 

  62. Guler, A. D., Lee, H., Iida, T., Shimizu, I., Tominaga, M., & Caterina, M. (2002). Heat-evoked activation of the ion channel, TRPV4. Journal of Neuroscience, 22, 6408–6414.

    PubMed  Google Scholar 

  63. Liedtke, W., Tobin, D. M., Bargmann, C. I., & Friedman, J. M. (2003). Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 2), 14531–14536.

    PubMed  Google Scholar 

  64. Kohler, R., Heyken, W. T., Heinau, P., Schubert, R., Si, H., Kacik, M., et al. (2006). Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arteriosclerosis, Thrombosis, and Vascular Biology, 26, 1495–1502.

    PubMed  Google Scholar 

  65. Hartmannsgruber, V., Heyken, W. T., Kacik, M., Kaistha, A., Grgic, I., Harteneck, C., et al. (2007). Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS ONE, 2, e827.

    PubMed  Google Scholar 

  66. Loot, A. E., Popp, R., Fisslthaler, B., Vriens, J., Nilius, B., & Fleming, I. (2008). Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovascular Research, 80, 445–452.

    PubMed  Google Scholar 

  67. Saliez, J., Bouzin, C., Rath, G., Ghisdal, P., Desjardins, F., Rezzani, R., et al. (2008). Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation, 117, 1065–1074.

    PubMed  Google Scholar 

  68. Jia, Y., Wang, X., Varty, L., Rizzo, C. A., Yang, R., Correll, C. C., et al. (2004). Functional TRPV4 channels are expressed in human airway smooth muscle cells. American Journal of Physiology Lung Cellular and Molecular Physiology, 287, L272–L278.

    PubMed  Google Scholar 

  69. Sipe, W. E., Brierley, S. M., Martin, C. M., Phillis, B. D., Cruz, F. B., Grady, E. F., et al. (2008). Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. American Journal of Physiology. Gastrointestinal and Liver Physiology, 294, G1288–G1298.

    PubMed  Google Scholar 

  70. Cenac, N., Altier, C., Chapman, K., Liedtke, W., Zamponi, G., & Vergnolle, N. (2008). Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology, 135, 937–946, 946.

    PubMed  Google Scholar 

  71. Parker, J. C., Ivey, C. L., & Tucker, J. A. (1998). Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. Journal of Applied Physiology, 84, 1113–1118.

    PubMed  Google Scholar 

  72. Hamanaka, K., Jian, M. Y., Weber, D. S., Alvarez, D. F., Townsley, M. I., Al-Mehdi, A. B., et al. (2007). TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. American Journal of Physiology Lung Cellular and Molecular Physiology, 293, L923–L932.

    PubMed  Google Scholar 

  73. Jian, M. Y., King, J. A., Al-Mehdi, A. B., Liedtke, W., & Townsley, M. I. (2008). High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. American Journal of Respiratory Cell and Molecular Biology, 38, 386–392.

    PubMed  Google Scholar 

  74. Caterina, M. J., & Julius, D. (1999). Sense and specificity: A molecular identity for nociceptors. Current Opinion in Neurobiology, 9, 525–530.

    PubMed  Google Scholar 

  75. Minke, B., & Cook, B. (2002). TRP channel proteins and signal transduction. Physiological Reviews, 82, 429–472.

    PubMed  Google Scholar 

  76. Kanzaki, M., Zhang, Y. Q., Mashima, H., Li, L., Shibata, H., & Kojima, I. (1999). Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nature Cell Biology, 1, 165–170.

    PubMed  Google Scholar 

  77. Stokes, A. J., Wakano, C., Del Carmen, K. A., Koblan-Huberson, M., & Turner, H. (2005). Formation of a physiological complex between TRPV2 and RGA protein promotes cell surface expression of TRPV2. Journal of Cellular Biochemistry, 94, 669–683.

    PubMed  Google Scholar 

  78. Muraki, K., Iwata, Y., Katanosaka, Y., Ito, T., Ohya, S., Shigekawa, M., et al. (2003). TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circulation Research, 93, 829–838.

    PubMed  Google Scholar 

  79. Caterina, M. J., Leffler, A., Malmberg, A. B., Martin, W. J., Trafton, J., Petersen-Zeitz, K. R., et al. (2000). Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science, 288, 306–313.

    PubMed  Google Scholar 

  80. Davis, J. B., Gray, J., Gunthorpe, M. J., Hatcher, J. P., Davey, P. T., Overend, P., et al. (2000). Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature, 405, 183–187.

    PubMed  Google Scholar 

  81. Birder, L. A., Nakamura, Y., Kiss, S., Nealen, M. L., Barrick, S., Kanai, A. J., et al. (2002). Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nature Neuroscience, 5, 856–860.

    PubMed  Google Scholar 

  82. Rong, W., Hillsley, K., Davis, J. B., Hicks, G., Winchester, W. J., & Grundy, D. (2004). Jejunal afferent nerve sensitivity in wild-type and TRPV1 knockout mice. Journal of Physiology, 560, 867–881.

    PubMed  Google Scholar 

  83. Scotland, R. S., Chauhan, S., Davis, C., De, F. C., Hunt, S., Kabir, J., et al. (2004). Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: A novel mechanism involved in myogenic constriction. Circulation Research, 95, 1027–1034.

    PubMed  Google Scholar 

  84. Chan, C. L., Facer, P., Davis, J. B., Smith, G. D., Egerton, J., Bountra, C., et al. (2003). Sensory fibres expressing capsaicin receptor TRPV1 in patients with rectal hypersensitivity and faecal urgency. Lancet, 361, 385–391.

    PubMed  Google Scholar 

  85. Sharif-Naeini, R., Witty, M. F., Seguela, P., & Bourque, C. W. (2006). An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nature Neuroscience, 9, 93–98.

    PubMed  Google Scholar 

  86. Ciura, S., & Bourque, C. W. (2006). Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. Journal of Neuroscience, 26, 9069–9075.

    PubMed  Google Scholar 

  87. Maroto, R., Raso, A., Wood, T. G., Kurosky, A., Martinac, B., & Hamill, O. P. (2005). TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nature Cell Biology, 7, 179–185.

    PubMed  Google Scholar 

  88. Dietrich, A., Kalwa, H., Storch, U., Schnitzler, M., Salanova, B., Pinkenburg, O., et al. (2007). Pressure-induced and store-operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Archiv, 455, 465–477.

    PubMed  Google Scholar 

  89. Inoue, R., Jensen, L. J., Shi, J., Morita, H., Nishida, M., Honda, A., et al. (2006). Transient receptor potential channels in cardiovascular function and disease. Circulation Research, 99, 119–131.

    PubMed  Google Scholar 

  90. Inoue, R., Jensen, L. J., Jian, Z., Shi, J., Hai, L., Lurie, A. I., et al. (2009). Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circulation Research, 104, 1399–1409.

    PubMed  Google Scholar 

  91. Dietrich, A., Mederos, Y. S., Gollasch, M., Gross, V., Storch, U., Dubrovska, G., et al. (2005). Increased vascular smooth muscle contractility in TRPC6−/− mice. Molecular and Cellular Biology, 25, 6980–6989.

    PubMed  Google Scholar 

  92. Welsh, D. G., Morielli, A. D., Nelson, M. T., & Brayden, J. E. (2002). Transient receptor potential channels regulate myogenic tone of resistance arteries. Circulation Research, 90, 248–250.

    PubMed  Google Scholar 

  93. Gottlieb, P., Folgering, J., Maroto, R., Raso, A., Wood, T. G., Kurosky, A., et al. (2008). Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Archiv, 455, 1097–1103.

    PubMed  Google Scholar 

  94. Narayanan, J., Imig, M., Roman, R. J., & Harder, D. R. (1994). Pressurization of isolated renal arteries increases inositol trisphosphate and diacylglycerol. American Journal of Physiology, 266, H1840–H1845.

    PubMed  Google Scholar 

  95. Harder, D. R., Lange, A. R., Gebremedhin, D., Birks, E. K., & Roman, R. J. (1997). Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue. Journal of Vascular Research, 34, 237–243.

    PubMed  Google Scholar 

  96. Roman, R. J. (2002). P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiological Reviews, 82, 131–185.

    PubMed  Google Scholar 

  97. Basora, N., Boulay, G., Bilodeau, L., Rousseau, E., & Payet, M. D. (2003). 20-Hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. Journal of Biological Chemistry, 278, 31709–31716.

    PubMed  Google Scholar 

  98. Earley, S., Straub, S. V., & Brayden, J. E. (2007). Protein kinase C regulates vascular myogenic tone through activation of TRPM4. American Journal of Physiology. Heart and Circulatory Physiology, 292, H2613–H2622.

    PubMed  Google Scholar 

  99. Earley, S., Waldron, B. J., & Brayden, J. E. (2004). Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circulation Research, 95, 922–929.

    PubMed  Google Scholar 

  100. Morita, H., Honda, A., Inoue, R., Ito, Y., Abe, K., Nelson, M. T., et al. (2007). Membrane stretch-induced activation of a TRPM4-like nonselective cation channel in cerebral artery myocytes. Journal of Pharmacological Sciences, 103, 417–426.

    PubMed  Google Scholar 

  101. Oancea, E., Wolfe, J. T., & Clapham, D. E. (2006). Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circulation Research, 98, 245–253.

    PubMed  Google Scholar 

  102. Numata, T., Shimizu, T., & Okada, Y. (2007). TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. American Journal of Physiology. Cell Physiology, 292, C460–C467.

    PubMed  Google Scholar 

  103. Numata, T., Shimizu, T., & Okada, Y. (2007). Direct mechano-stress sensitivity of TRPM7 channel. Cellular Physiology and Biochemistry, 19, 1–8.

    PubMed  Google Scholar 

  104. Praetorius, H. A., & Spring, K. R. (2001). Bending the MDCK cell primary cilium increases intracellular calcium. Journal of Membrane Biology, 184, 71–79.

    PubMed  Google Scholar 

  105. Praetorius, H. A., & Spring, K. R. (2005). A physiological view of the primary cilium. Annual Review of Physiology, 67, 515–529.

    PubMed  Google Scholar 

  106. Giamarchi, A., Padilla, F., Coste, B., Raoux, M., Crest, M., Honore, E., et al. (2006). The versatile nature of the calcium-permeable cation channel TRPP2. EMBO Reports, 7, 787–793.

    PubMed  Google Scholar 

  107. Clapham, D. E., Julius, D., Montell, C., & Schultz, G. (2005). International Union of Pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacological Reviews, 57, 427–450.

    PubMed  Google Scholar 

  108. Arnaout, M. A. (2001). Molecular genetics and pathogenesis of autosomal dominant polycystic kidney disease. Annual Review of Medicine, 52, 93–123.

    PubMed  Google Scholar 

  109. Pazour, G. J., San Agustin, J. T., Follit, J. A., Rosenbaum, J. L., & Witman, G. B. (2002). Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Current Biology, 12, R378–R380.

    PubMed  Google Scholar 

  110. Yoder, B. K., Hou, X., & Guay-Woodford, L. M. (2002). The polycystic kidney disease proteins, polycystin-1, polycystin-2, polaris, and cystin, are co-localized in renal cilia. Journal of the American Society of Nephrology, 13, 2508–2516.

    PubMed  Google Scholar 

  111. Qian, F., Germino, F. J., Cai, Y., Zhang, X., Somlo, S., & Germino, G. G. (1997). PKD1 interacts with PKD2 through a probable coiled-coil domain. Nature Genetics, 16, 179–183.

    PubMed  Google Scholar 

  112. Hanaoka, K., Qian, F., Boletta, A., Bhunia, A. K., Piontek, K., Tsiokas, L., et al. (2000). Co-assembly of polycystin-1 and -2 produces unique cation-permeable currents. Nature, 408, 990–994.

    PubMed  Google Scholar 

  113. Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., et al. (2003). Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature Genetics, 33, 129–137.

    PubMed  Google Scholar 

  114. Hughes, J., Ward, C. J., Peral, B., Aspinwall, R., Clark, K., San Millan, J. L., et al. (1995). The polycystic kidney disease 1 (PKD1) gene encodes a novel protein with multiple cell recognition domains. Nature Genetics, 10, 151–160.

    PubMed  Google Scholar 

  115. Sandford, R., Sgotto, B., Aparicio, S., Brenner, S., Vaudin, M., Wilson, R. K., et al. (1997). Comparative analysis of the polycystic kidney disease 1 (PKD1) gene reveals an integral membrane glycoprotein with multiple evolutionary conserved domains. Human Molecular Genetics, 6, 1483–1489.

    PubMed  Google Scholar 

  116. Koulen, P., Cai, Y., Geng, L., Maeda, Y., Nishimura, S., Witzgall, R., et al. (2002). Polycystin-2 is an intracellular calcium release channel. Nature Cell Biology, 4, 191–197.

    PubMed  Google Scholar 

  117. Kottgen, M., Buchholz, B., Garcia-Gonzalez, M. A., Kotsis, F., Fu, X., Doerken, M., et al. (2008). TRPP2 and TRPV4 form a polymodal sensory channel complex. Journal of Cell Biology, 182, 437–447.

    PubMed  Google Scholar 

  118. Walker, R. G., Willingham, A. T., & Zuker, C. S. (2000). A Drosophila mechanosensory transduction channel. Science, 287, 2229–2234.

    PubMed  Google Scholar 

  119. Sidi, S., Friedrich, R. W., & Nicolson, T. (2003). NompC TRP channel required for vertebrate sensory hair cell mechanotransduction. Science, 301, 96–99.

    PubMed  Google Scholar 

  120. Jaquemar, D., Schenker, T., & Trueb, B. (1999). An ankyrin-like protein with transmembrane domains is specifically lost after oncogenic transformation of human fibroblasts. Journal of Biological Chemistry, 274, 7325–7333.

    PubMed  Google Scholar 

  121. Bandell, M., Story, G. M., Hwang, S. W., Viswanath, V., Eid, S. R., Petrus, M. J., et al. (2004). Noxious cold ion channel TRPA1 is activated by pungent compounds and bradykinin. Neuron, 41, 849–857.

    PubMed  Google Scholar 

  122. Jordt, S. E., Bautista, D. M., Chuang, H. H., McKemy, D. D., Zygmunt, P. M., Hogestatt, E. D., et al. (2004). Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature, 427, 260–265.

    PubMed  Google Scholar 

  123. Story, G. M., Peier, A. M., Reeve, A. J., Eid, S. R., Mosbacher, J., Hricik, T. R., et al. (2003). ANKTM1, a TRP-like channel expressed in nociceptive neurons, is activated by cold temperatures. Cell, 112, 819–829.

    PubMed  Google Scholar 

  124. Corey, D. P., Garcia-Anoveros, J., Holt, J. R., Kwan, K. Y., Lin, S. Y., Vollrath, M. A., et al. (2004). TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature, 432, 723–730.

    PubMed  Google Scholar 

  125. Howard, J., & Bechstedt, S. (2004). Hypothesis: A helix of ankyrin repeats of the NOMPC-TRP ion channel is the gating spring of mechanoreceptors. Current Biology, 14, R224–R226.

    PubMed  Google Scholar 

  126. Bautista, D. M., Jordt, S. E., Nikai, T., Tsuruda, P. R., Read, A. J., Poblete, J., et al. (2006). TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell, 124, 1269–1282.

    PubMed  Google Scholar 

  127. Kwan, K. Y., Allchorne, A. J., Vollrath, M. A., Christensen, A. P., Zhang, D. S., Woolf, C. J., et al. (2006). TRPA1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction. Neuron, 50, 277–289.

    PubMed  Google Scholar 

  128. Di, P. F., Belyantseva, I. A., Kim, H. J., Vogt, T. F., Kachar, B., & Noben-Trauth, K. (2002). Mutations in Mcoln3 associated with deafness and pigmentation defects in varitint-waddler (Va) mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 14994–14999.

    Google Scholar 

  129. Corey, D. P. (2006). What is the hair cell transduction channel? Journal of Physiology, 576, 23–28.

    PubMed  Google Scholar 

  130. van Aken, A. F., tiba-Davies, M., Marcotti, W., Goodyear, R. J., Bryant, J. E., Richardson, G. P., et al. (2008). TRPML3 mutations cause impaired mechano-electrical transduction and depolarization by an inward-rectifier cation current in auditory hair cells of varitint-waddler mice. Journal of Physiology, 586, 5403–5418.

    PubMed  Google Scholar 

  131. Zhou, X. L., Batiza, A. F., Loukin, S. H., Palmer, C. P., Kung, C., & Saimi, Y. (2003). The transient receptor potential channel on the yeast vacuole is mechanosensitive. Proceedings of the National Academy of Sciences of the United States of America, 100, 7105–7110.

    PubMed  Google Scholar 

  132. Myers, B. R., Saimi, Y., Julius, D., & Kung, C. (2008). Multiple unbiased prospective screens identify TRP channels and their conserved gating elements. Journal of General Physiology, 132, 481–486.

    PubMed  Google Scholar 

  133. Bezzerides, V. J., Ramsey, I. S., Kotecha, S., Greka, A., & Clapham, D. E. (2004). Rapid vesicular translocation and insertion of TRP channels. Nature Cell Biology, 6, 709–720.

    PubMed  Google Scholar 

  134. Iwata, Y., Katanosaka, Y., Arai, Y., Komamura, K., Miyatake, K., & Shigekawa, M. (2003). A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. Journal of Cell Biology, 161, 957–967.

    PubMed  Google Scholar 

  135. Rizzo, V., Sung, A., Oh, P., & Schnitzer, J. E. (1998). Rapid mechanotransduction in situ at the luminal cell surface of vascular endothelium and its caveolae. Journal of Biological Chemistry, 273, 26323–26329.

    PubMed  Google Scholar 

  136. Yu, J., Bergaya, S., Murata, T., Alp, I. F., Bauer, M. P., Lin, M. I., et al. (2006). Direct evidence for the role of caveolin-1 and caveolae in mechanotransduction and remodeling of blood vessels. Journal of Clinical Investigation, 116, 1284–1291.

    PubMed  Google Scholar 

  137. Radel, C., Carlile-Klusacek, M., & Rizzo, V. (2007). Participation of caveolae in β1 integrin-mediated mechanotransduction. Biochemical and Biophysical Research Communications, 358, 626–631.

    PubMed  Google Scholar 

  138. van Deurs, B., Roepstorff, K., Hommelgaard, A. M., & Sandvig, K. (2003). Caveolae: Anchored, multifunctional platforms in the lipid ocean. Trends in Cell Biology, 13, 92–100.

    PubMed  Google Scholar 

  139. Isshiki, M., & Anderson, R. G. (2003). Function of caveolae in Ca2+ entry and Ca2+-dependent signal transduction. Traffic, 4, 717–723.

    PubMed  Google Scholar 

  140. Murata, T., Lin, M. I., Stan, R. V., Bauer, P. M., Yu, J., & Sessa, W. C. (2007). Genetic evidence supporting caveolae microdomain regulation of calcium entry in endothelial cells. Journal of Biological Chemistry, 282, 16631–16643.

    PubMed  Google Scholar 

  141. Park, H., Go, Y. M., Darji, R., Choi, J. W., Lisanti, M. P., Maland, M. C., et al. (2000). Caveolin-1 regulates shear stress-dependent activation of extracellular signal-regulated kinase. American Journal of Physiology. Heart and Circulatory Physiology, 278, H1285–H1293.

    PubMed  Google Scholar 

  142. Conrad, P. A., Smart, E. J., Ying, Y. S., Anderson, R. G., & Bloom, G. S. (1995). Caveolin cycles between plasma membrane caveolae and the Golgi complex by microtubule-dependent and microtubule-independent steps. Journal of Cell Biology, 131, 1421–1433.

    PubMed  Google Scholar 

  143. Sun, R. J., Muller, S., Zhuang, F. Y., Stoltz, J. F., & Wang, X. (2003). Caveolin-1 redistribution in human endothelial cells induced by laminar flow and cytokine. Biorheology, 40, 31–39.

    PubMed  Google Scholar 

  144. Rizzo, V., Morton, C., dePaola, N., Schnitzer, J. E., & Davies, P. F. (2003). Recruitment of endothelial caveolae into mechanotransduction pathways by flow conditioning in vitro. American Journal of Physiology. Heart and Circulatory Physiology, 285, H1720–H1729.

    PubMed  Google Scholar 

  145. Boyd, N. L., Park, H., Yi, H., Boo, Y. C., Sorescu, G. P., Sykes, M., et al. (2003). Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. American Journal of Physiology. Heart and Circulatory Physiology, 285, H1113–H1122.

    PubMed  Google Scholar 

  146. Fleming, I., Rueben, A., Popp, R., Fisslthaler, B., Schrodt, S., Sander, A., et al. (2007). Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2+ signaling and hyperpolarization in endothelial cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 27, 2612–2618.

    PubMed  Google Scholar 

  147. Kwiatek, A. M., Minshall, R. D., Cool, D. R., Skidgel, R. A., Malik, A. B., & Tiruppathi, C. (2006). Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to transient receptor potential channel-1 in endothelial cells. Molecular Pharmacology, 70, 1174–1183.

    PubMed  Google Scholar 

  148. Pani, B., & Singh, B. B. (2009). Lipid rafts/caveolae as microdomains of calcium signaling. Cell Calcium, 45, 625–633.

    PubMed  Google Scholar 

  149. Jin, X., Touhey, J., & Gaudet, R. (2006). Structure of the N-terminal ankyrin repeat domain of the TRPV2 ion channel. Journal of Biological Chemistry, 281, 25006–25010.

    PubMed  Google Scholar 

  150. Chang, Q., Gyftogianni, E., van de Graaf, S. F., Hoefs, S., Weidema, F. A., Bindels, R. J., et al. (2004). Molecular determinants in TRPV5 channel assembly. Journal of Biological Chemistry, 279, 54304–54311.

    PubMed  Google Scholar 

  151. Erler, I., Hirnet, D., Wissenbach, U., Flockerzi, V., & Niemeyer, B. A. (2004). Ca2+-selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. Journal of Biological Chemistry, 279, 34456–34463.

    PubMed  Google Scholar 

  152. Kahr, H., Schindl, R., Fritsch, R., Heinze, B., Hofbauer, M., Hack, M. E., et al. (2004). CaT1 knock-down strategies fail to affect CRAC channels in mucosal-type mast cells. Journal of Physiology, 557, 121–132.

    PubMed  Google Scholar 

  153. Lussier, M. P., Cayouette, S., Lepage, P. K., Bernier, C. L., Francoeur, N., St-Hilaire, M., et al. (2005). MxA, a member of the dynamin superfamily, interacts with the ankyrin-like repeat domain of TRPC. Journal of Biological Chemistry, 280, 19393–19400.

    PubMed  Google Scholar 

  154. Xu, X. Z., Chien, F., Butler, A., Salkoff, L., & Montell, C. (2000). TRPγ, a drosophila TRP-related subunit, forms a regulated cation channel with TRPL. Neuron, 26, 647–657.

    PubMed  Google Scholar 

  155. Garcia-Sanz, N., Fernandez-Carvajal, A., Morenilla-Palao, C., Planells-Cases, R., Fajardo-Sanchez, E., Fernandez-Ballester, G., et al. (2004). Identification of a tetramerization domain in the C terminus of the vanilloid receptor. Journal of Neuroscience, 24, 5307–5314.

    PubMed  Google Scholar 

  156. Engelke, M., Friedrich, O., Budde, P., Schafer, C., Niemann, U., Zitt, C., et al. (2002). Structural domains required for channel function of the mouse transient receptor potential protein homologue TRP1beta. FEBS Letters, 523, 193–199.

    PubMed  Google Scholar 

  157. Tsuruda, P. R., Julius, D., & Minor, D. L., Jr. (2006). Coiled coils direct assembly of a cold-activated TRP channel. Neuron, 51, 201–212.

    PubMed  Google Scholar 

  158. Hellwig, N., Albrecht, N., Harteneck, C., Schultz, G., & Schaefer, M. (2005). Homo- and heteromeric assembly of TRPV channel subunits. Journal of Cell Science, 118, 917–928.

    PubMed  Google Scholar 

  159. Schindl, R., & Romanin, C. (2007). Assembly domains in TRP channels. Biochemical Society Transactions, 35, 84–85.

    PubMed  Google Scholar 

  160. Arniges, M., Fernandez-Fernandez, J. M., Albrecht, N., Schaefer, M., & Valverde, M. A. (2006). Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. Journal of Biological Chemistry, 281, 1580–1586.

    PubMed  Google Scholar 

  161. Cioffi, D. L., Uhlig, S., & Stevens, T. (2009). Subunit stoichiometry of the endogenous endothelial ISOC channel in the pulmonary microcirculation [Abstract]. FASEB Journal, 23, 964.12.

    Google Scholar 

  162. Vriens, J., Watanabe, H., Janssens, A., Droogmans, G., Voets, T., & Nilius, B. (2004). Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proceedings of the National Academy of Sciences of the United States of America, 101, 396–401.

    PubMed  Google Scholar 

  163. Vriens, J., Owsianik, G., Fisslthaler, B., Suzuki, M., Janssens, A., Voets, T., et al. (2005). Modulation of the Ca2+ permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circulation Research, 97, 908–915.

    PubMed  Google Scholar 

  164. Mederos y Schnitzler, M., Storch, U., Meibers, S., Nurwakagari, P., Breit, A., Essin, K., et al. (2008). Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. EMBO Journal, 27, 3092–3103.

    PubMed  Google Scholar 

  165. Sharif-Naeini, R., Folgering, J. H., Bichet, D., Duprat, F., Delmas, P., Patel, A., et al. (2009). Sensing pressure in the cardiovascular system: Gq-coupled mechanoreceptors and TRP channels. Journal of Molecular and Cellular Cardiology [Epub ahead of print].

  166. Osol, G., Laher, I., & Kelley, M. (1993). Myogenic tone is coupled to phospholipase C and G protein activation in small cerebral arteries. American Journal of Physiology, 265, H415–H420.

    PubMed  Google Scholar 

  167. Spassova, M. A., Hewavitharana, T., Xu, W., Soboloff, J., & Gill, D. L. (2006). A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proceedings of the National Academy of Sciences of the United States of America, 103, 16586–16591.

    PubMed  Google Scholar 

  168. Zhang, Z., & Bourque, C. W. (2003). Osmometry in osmosensory neurons. Nature Neuroscience, 6, 1021–1022.

    PubMed  Google Scholar 

  169. Spencer, N. J., Kerrin, A., Singer, C. A., Hennig, G. W., Gerthoffer, W. T., & McDonnell, O. (2008). Identification of capsaicin-sensitive rectal mechanoreceptors activated by rectal distension in mice. Neuroscience, 153, 518–534.

    PubMed  Google Scholar 

  170. Shimohira, D., Kido, M. A., Danjo, A., Takao, T., Wang, B., Zhang, J. Q., et al. (2009). TRPV2 expression in rat oral mucosa. Histochemistry and Cell Biology, 132, 423–433.

    Google Scholar 

  171. Chen, L., Liu, C., & Liu, L. (2009). Osmolality-induced tuning of action potentials in trigeminal ganglion neurons. Neuroscience Letters, 452, 79–83.

    PubMed  Google Scholar 

  172. Chen, L., Liu, C., Liu, L., & Cao, X. (2009). Changes in osmolality modulate voltage-gated sodium channels in trigeminal ganglion neurons. Neuroscience Research, 64, 199–207.

    PubMed  Google Scholar 

  173. Becker, D., Bereiter-Hahn, J., & Jendrach, M. (2009). Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. European Journal of Cell Biology, 88, 141–152.

    PubMed  Google Scholar 

  174. Garcia-Elias, A., Lorenzo, I. M., Vicente, R., & Valverde, M. A. (2008). IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site. Journal of Biological Chemistry, 283, 31284–31288.

    PubMed  Google Scholar 

  175. Wegierski, T., Lewandrowski, U., Muller, B., Sickmann, A., & Walz, G. (2009). Tyrosine phosphorylation modulates the activity of TRPV4 in response to defined stimuli. Journal of Biological Chemistry, 284, 2923–2933.

    PubMed  Google Scholar 

  176. Mizuno, A., Matsumoto, N., Imai, M., & Suzuki, M. (2003). Impaired osmotic sensation in mice lacking TRPV4. American Journal of Physiology. Cell Physiology, 285, C96–C101.

    PubMed  Google Scholar 

  177. Liedtke, W., & Friedman, J. M. (2003). Abnormal osmotic regulation in trpv4−/− mice. Proceedings of the National Academy of Sciences of the United States of America, 100, 13698–13703.

    PubMed  Google Scholar 

  178. Troidl, C., Troidl, K., Schierling, W., Cai, W. J., Nef, H., Mollmann, H., et al. (2008). Trpv4 induces collateral vessel growth during regeneration of the arterial circulation. Journal of Cellular and Molecular Medicine [Epub ahead of print].

  179. Mochizuki, T., Sokabe, T., Araki, I., Fujishita, K., Shibasaki, K., Uchida, K., et al. (2009). The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. Journal of Biological Chemistry, 284, 21257–21264.

    PubMed  Google Scholar 

  180. Thodeti, C. K., Matthews, B., Ravi, A., Mammoto, A., Ghosh, K., Bracha, A. L., et al. (2009). TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circulation Research, 104, 1123–1130.

    PubMed  Google Scholar 

  181. Gevaert, T., Vriens, J., Segal, A., Everaerts, W., Roskams, T., Talavera, K., et al. (2007). Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. Journal of Clinical Investigation, 117, 3453–3462.

    PubMed  Google Scholar 

  182. Tsiokas, L. (2009). Function and regulation of TRPP2 at the plasma membrane. American Journal of Physiology. Renal Physiology, 297, F1–F9.

    PubMed  Google Scholar 

  183. Nilius, B., Prenen, J., Tang, J., Wang, C., Owsianik, G., Janssens, A., et al. (2005). Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. Journal of Biological Chemistry, 280, 6423–6433.

    PubMed  Google Scholar 

  184. Kwan, H. Y., Huang, Y., & Yao, X. (2007). TRP channels in endothelial function and dysfunction. Biochimica et Biophysica Acta, 1772, 907–914.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Julia Hoffmann and Stephanie Kaestle for Western blot analyses shown in Fig. 4, Dr. Joerg Baeurle for immunohistological images in Fig. 4, and Dr. Wolfgang Liedtke, Departments of Medicine, Neurology, and Neurobiology, Duke University, Durham, NC, for kind provision of TRPV4−/− mice. This article was supported by the Deutsche Forschungsgemeinschaft (Ku1218/4; Ku1218/5), Canadian Institutes of Health Research (CIHR); and the Kaiserin-Friedrich Foundation, Berlin, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang M. Kuebler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, J., Kuebler, W.M. Mechanotransduction by TRP Channels: General Concepts and Specific Role in the Vasculature. Cell Biochem Biophys 56, 1–18 (2010). https://doi.org/10.1007/s12013-009-9067-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-009-9067-2

Keywords

Navigation