Skip to main content
Log in

Percutaneous Mechanical Circulatory Support for Cardiogenic Shock

  • Heart Failure (W Tang, Section Editor)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

The use of percutaneous, non-durable mechanical circulatory support (MCS) for cardiogenic shock (CS) is growing; however, large, randomized clinical trials confirming benefit in this population do not exist. Guidelines and recommendations regarding optimal timing for MCS implementation, patient selection, device selection, and post-implantation management are beginning to emerge. A better understanding of (1) the distinct hemodynamic effects of each device option, (2) the need for early implementation of the appropriate device option for a particular clinical scenario, (3) the definition of non-salvageable CS to help clinicians know when to say “no” to non-durable MCS, and (4) best practices to monitor, wean, and optimize metabolic parameters while using non-durable MCS are required to continue improving clinical outcomes for patients with CS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hochman JS, Sleeper LA, Webb JG, Sanborn TA, White HD, Talley JD, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK investigators. Should We emergently revascularize occluded coronaries for cardiogenic shock. N Engl J Med. 1999;341(9):625–34. doi:10.1056/NEJM199908263410901. The landmark SHOCK trial provided a hemodynamic definition for the diagnosis of cardiogenic shock that is commonly used in clinical practice worldwide. The SHOCK trial also identified the importance of early revascularization in acute myocardial infarction.

    Article  CAS  PubMed  Google Scholar 

  2. Babaev A, Frederick PD, Pasta DJ, Every N, Sichrovsky T, Hochman JS, et al. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. JAMA. 2005;294(4):448–54. doi:10.1001/jama.294.4.448.

    Article  CAS  PubMed  Google Scholar 

  3. Hochman JS, Buller CE, Sleeper LA, Boland J, Dzavik V, Sanborn TA, et al. Cardiogenic shock complicating acute myocardial infarction—etiologies, management and outcome: a report from the SHOCK trial registry. SHould we emergently revascularize occluded coronaries for cardiogenic shocK? J Am Coll Cardiol. 2000;36(3):1063–70.

    Article  CAS  PubMed  Google Scholar 

  4. Kohl LP, Jones WS. Management of cardiogenic shock in the setting of ST-elevation myocardial infarction: controversies and future directions. Minerva Cardioangiol. 2015;63(4):329–42.

    CAS  PubMed  Google Scholar 

  5. Kolte D, Khera S, Aronow WS, Mujib M, Palaniswamy C, Sule S, et al. Trends in incidence, management, and outcomes of cardiogenic shock complicating ST-elevation myocardial infarction in the United States. J Am Heart Assoc. 2014;3(1), e000590. doi:10.1161/JAHA.113.000590.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Sandhu A, McCoy LA, Negi SI, Hameed I, Atri P, Al'Aref SJ, et al. Use of mechanical circulatory support in patients undergoing percutaneous coronary intervention: insights from the national cardiovascular data registry. Circulation. 2015;132(13):1243–51. doi:10.1161/CIRCULATIONAHA.114.014451.

    Article  PubMed  Google Scholar 

  7. Aissaoui N, Puymirat E, Tabone X, Charbonnier B, Schiele F, Lefevre T, et al. Improved outcome of cardiogenic shock at the acute stage of myocardial infarction: a report from the USIK 1995, USIC 2000, and FAST-MI French nationwide registries. Eur Heart J. 2012;33(20):2535–43. doi:10.1093/eurheartj/ehs264.

    Article  PubMed  Google Scholar 

  8. Goldberg RJ, Spencer FA, Gore JM, Lessard D, Yarzebski J. Thirty-year trends (1975 to 2005) in the magnitude of, management of, and hospital death rates associated with cardiogenic shock in patients with acute myocardial infarction: a population-based perspective. Circulation. 2009;119(9):1211–9. doi:10.1161/CIRCULATIONAHA.108.814947.

    Article  PubMed Central  PubMed  Google Scholar 

  9. Jeger RV, Radovanovic D, Hunziker PR, Pfisterer ME, Stauffer JC, Erne P, et al. Ten-year trends in the incidence and treatment of cardiogenic shock. Ann Intern Med. 2008;149(9):618–26.

    Article  PubMed  Google Scholar 

  10. Sanborn TA, Sleeper LA, Bates ER, Jacobs AK, Boland J, French JK, et al. Impact of thrombolysis, intra-aortic balloon pump counterpulsation, and their combination in cardiogenic shock complicating acute myocardial infarction: a report from the SHOCK trial registry. SHould we emergently revascularize occluded coronaries for cardiogenic shocK? J Am Coll Cardiol. 2000;36(3):1123–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ezekowitz JA, Kaul P, Bakal JA, Armstrong PW, Welsh RC, McAlister FA. Declining in-hospital mortality and increasing heart failure incidence in elderly patients with first myocardial infarction. J Am Coll Cardiol. 2009;53(1):13–20. doi:10.1016/j.jacc.2008.08.067. This report describes the link between interventional cardiology and heart failure by identifying that despite low short-term mortality associated with primary PCI in the setting of acute myocardial infarction, large numbers of patients develop subsequent heart failure within 5 years.

  12. Unverzagt S, Buerke M, de Waha A, Haerting J, Pietzner D, Seyfarth M, et al. Intra-aortic balloon pump counterpulsation (IABP) for myocardial infarction complicated by cardiogenic shock. Cochrane Database Syst Rev. 2015;3, CD007398. doi:10.1002/14651858.CD007398.pub3.

    PubMed  Google Scholar 

  13. Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, et al. Fifth INTERMACS annual report: risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant Off Pub Int Soc Heart Trans. 2013;32(2):141–56. doi:10.1016/j.healun.2012.12.004.

    Article  Google Scholar 

  14. Stretch R, Sauer CM, Yuh DD, Bonde P. National trends in the utilization of short-term mechanical circulatory support: incidence, outcomes, and cost analysis. J Am Coll Cardiol. 2014;64(14):1407–15. doi:10.1016/j.jacc.2014.07.958. This report is one of the first in a series of studies examining national trends in the use of non-durable circulatory support and demonstrates an important growth that parallels the increase in use of durable circulatory support devices.

    Article  PubMed  Google Scholar 

  15. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cercek B, et al. ACCF/AHA/SCAI guideline for percutaneous coronary intervention. A report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines and the Society for Cardiovascular Angiography and Interventions. J Am Coll Cardiol. 2011;58(24):e44–122. doi:10.1016/j.jacc.2011.08.007.

    Article  PubMed  Google Scholar 

  16. Peura JL, Colvin-Adams M, Francis GS, Grady KL, Hoffman TM, Jessup M, et al. Recommendations for the use of mechanical circulatory support: device strategies and patient selection: a scientific statement from the American Heart Association. Circulation. 2012;126(22):2648–67. doi:10.1161/CIR.0b013e3182769a54.

    Article  PubMed  Google Scholar 

  17. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, et al. The 2013 international society for heart and lung transplantation guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant Off Publication of Int Soc Heart Tran. 2013;32(2):157–87. doi:10.1016/j.healun.2012.09.013.

    Article  Google Scholar 

  18. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey Jr DE, Drazner MH, et al. ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;128(16):1810–52. doi:10.1161/CIR.0b013e31829e8807.

    Article  PubMed  Google Scholar 

  19. O'Gara PT, Kushner FG, Ascheim DD, Casey Jr DE, Chung MK, de Lemos JA, et al. ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation. 2013;127(4):529–55. doi:10.1161/CIR.0b013e3182742c84.

    Article  PubMed  Google Scholar 

  20. Rihal CS, Naidu SS, Givertz MM, Szeto WY, Burke JA, Kapur NK, et al. SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical circulatory support devices in cardiovascular care (endorsed by the American Heart Association, the Cardiological Society of India, and Sociedad Latino Americana de Cardiologia Intervencion; affirmation of value by the Canadian association of interventional cardiology-association Canadienne de Cardiologie d’intervention). J Card Fail. 2015;21(6):499–518. doi:10.1016/j.cardfail.2015.03.002. This statement is the first of its kind to address the field of acute circulatory support devices. The statements provides background on each device option, discusses hemodynamic effects of each device, and provides some recommendations on device utilization.

    Article  PubMed  Google Scholar 

  21. De Silva K, Lumley M, Kailey B, Alastruey J, Guilcher A, Asrress KN, et al. Coronary and microvascular physiology during intra-aortic balloon counterpulsation. J Am Coll Cardiol Intv. 2014;7(6):631–40. doi:10.1016/j.jcin.2013.11.023.

    Article  Google Scholar 

  22. Bolotin G, Wolf T, Shachner R, van der Veen FH, Shofti R, Lorusso R, et al. Hemodynamic evaluation of descending aortomyoplasty versus intra-aortic balloon pump performed in normal animals: an acute study. Euro J Cardio-Thoracic Surg Off J European Assoc Cardio-thor Surg. 2001;19(2):174–8.

    Article  CAS  Google Scholar 

  23. Braunwald E, Sarnoff SJ, Case RB, Stainsby WN, Welch Jr GH. Hemodynamic determinants of coronary flow: effect of changes in aortic pressure and cardiac output on the relationship between myocardial oxygen consumption and coronary flow. Am J Physiol. 1958;192(1):157–63.

    CAS  PubMed  Google Scholar 

  24. Kern MJ, Aguirre F, Bach R, Donohue T, Siegel R, Segal J. Augmentation of coronary blood flow by intra-aortic balloon pumping in patients after coronary angioplasty. Circulation. 1993;87(2):500–11. This report is a critical analysis of the hemodynamic effects of IABP therapy on coronary flow. The study identified that IABP therapy does not provide significant coronary flow augmentation in the presence of a fixed stenosis, but provides clear increase in coronary flow velocity after angioplasty.

    Article  CAS  PubMed  Google Scholar 

  25. Sarnoff SJ, Braunwald E, Welch Jr GH, Case RB, Stainsby WN, Macruz R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Physiol. 1958;192(1):148–56.

    CAS  PubMed  Google Scholar 

  26. Sarnoff SJ, Case RB, Welch Jr GH, Braunwald E, Stainsby WN. Performance characteristics and oxygen debt in a nonfailing, metabolically supported, isolated heart preparation. Am J Physiol. 1958;192(1):141–7.

    CAS  PubMed  Google Scholar 

  27. Schreuder JJ, Castiglioni A, Donelli A, Maisano F, Jansen JR, Hanania R, et al. Automatic intraaortic balloon pump timing using an intrabeat dicrotic notch prediction algorithm. Ann Thorac Surg. 2005;79(3):1017–22. doi:10.1016/j.athoracsur.2004.07.074. discussion 22.

    Article  PubMed  Google Scholar 

  28. Schreuder JJ, Maisano F, Donelli A, Jansen JR, Hanlon P, Bovelander J, et al. Beat-to-beat effects of intraaortic balloon pump timing on left ventricular performance in patients with low ejection fraction. Ann Thorac Surg. 2005;79(3):872–80. doi:10.1016/j.athoracsur.2004.07.073.

    Article  PubMed  Google Scholar 

  29. Welch Jr GH, Braunwald E, Case RB, Sarnoff SJ. The effect of mephentermine sulfate on myocardial oxygen consumption, myocardial efficiency and peripheral vascular resistance. Am J Med. 1958;24(6):871–81.

    Article  PubMed  Google Scholar 

  30. Williams DO, Korr KS, Gewirtz H, Most AS. The effect of intraaortic balloon counterpulsation on regional myocardial blood flow and oxygen consumption in the presence of coronary artery stenosis in patients with unstable angina. Circulation. 1982;66(3):593–7.

    Article  CAS  PubMed  Google Scholar 

  31. Kapur NK, Paruchuri V, Majithia A, Esposito M, Shih H, Weintraub A, et al. Hemodynamic effects of standard versus larger-capacity intraaortic balloon counterpulsation pumps. J Invasive Cardiol. 2015;27(4):182–8.

    PubMed  Google Scholar 

  32. Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96. doi:10.1056/NEJMoa1208410. This report identified that the routine use of IABP therapy for cardiogenic shock in the setting of an acute myocardial infarction did not have any significant benefit over medical therapy alone. The trial was limited by a high cross-over rate to IABP therapy, no hemodynamic data indiciating IABP efficacy, and no protocolized timing recommendation for IABP therapy, which could any time before or after clinical presentation.

    Article  CAS  PubMed  Google Scholar 

  33. Ramanathan K, Farkouh ME, Cosmi JE, French JK, Harkness SM, Dzavik V, et al. Rapid complete reversal of systemic hypoperfusion after intra-aortic balloon pump counterpulsation and survival in cardiogenic shock complicating an acute myocardial infarction. Am Heart J. 2011;162(2):268–75. doi:10.1016/j.ahj.2011.04.025.

    Article  PubMed Central  PubMed  Google Scholar 

  34. O'Neill WW, Kleiman NS, Moses J, Henriques JP, Dixon S, Massaro J, et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study. Circulation. 2012;126(14):1717–27. doi:10.1161/CIRCULATIONAHA.112.098194. This is the largest randomized study available comparing IABP therapy to the Impella 2.5 in the setting of high risk PCI. This important trial helped to define the term high-risk PCI and demonstrated hemodynamic efficacy of the Impella 2.5 device. The study was terminated early due to futility. Subsequent analyses of the trial have shown potential benefit of the Impella 2.5 over IABP in this setting.

    Article  PubMed  Google Scholar 

  35. Seyfarth M, Sibbing D, Bauer I, Frohlich G, Bott-Flugel L, Byrne R, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52(19):1584–8. doi:10.1016/j.jacc.2008.05.065.

    Article  PubMed  Google Scholar 

  36. Lauten A, Engstrom AE, Jung C, Empen K, Erne P, Cook S, et al. Percutaneous left-ventricular support with the Impella-2.5-assist device in acute cardiogenic shock: results of the Impella-EUROSHOCK-registry. Circ Heart Fail. 2013;6(1):23–30. doi:10.1161/CIRCHEARTFAILURE.112.967224.

    Article  PubMed  Google Scholar 

  37. Engstrom AE, Cocchieri R, Driessen AH, Sjauw KD, Vis MM, Baan J, et al. The Impella 2.5 and 5.0 devices for ST-elevation myocardial infarction patients presenting with severe and profound cardiogenic shock: the academic medical center intensive care unit experience. Crit Care Med. 2011;39(9):2072–9. doi:10.1097/CCM.0b013e31821e89b5.

    Article  PubMed  Google Scholar 

  38. Cheng R, Hachamovitch R, Kittleson M, Patel J, Arabia F, Moriguchi J, et al. Complications of extracorporeal membrane oxygenation for treatment of cardiogenic shock and cardiac arrest: a meta-analysis of 1,866 adult patients. Ann Thorac Surg. 2014;97(2):610–6. doi:10.1016/j.athoracsur.2013.09.008.

    Article  PubMed  Google Scholar 

  39. Aghili N, Kang S, Kapur NK. The fundamentals of extra-corporeal membrane oxygenation. Minerva Cardioangiol. 2015;63(1):75–85.

    CAS  PubMed  Google Scholar 

  40. Kawashima D, Gojo S, Nishimura T, Itoda Y, Kitahori K, Motomura N, et al. Left ventricular mechanical support with Impella provides more ventricular unloading in heart failure than extracorporeal membrane oxygenation. ASAIO J. 2011;57(3):169–76. doi:10.1097/MAT.0b013e31820e121c.

    Article  PubMed  Google Scholar 

  41. Sheu JJ, Tsai TH, Lee FY, Fang HY, Sun CK, Leu S, et al. Early extracorporeal membrane oxygenator-assisted primary percutaneous coronary intervention improved 30-day clinical outcomes in patients with ST-segment elevation myocardial infarction complicated with profound cardiogenic shock. Crit Care Med. 2010;38(9):1810–7. doi:10.1097/CCM.0b013e3181e8acf7.

    Article  CAS  PubMed  Google Scholar 

  42. Esper SA, Bermudez C, Dueweke EJ, Kormos R, Subramaniam K, Mulukutla S, et al. Extracorporeal membrane oxygenation support in acute coronary syndromes complicated by cardiogenic shock. Catheter Cardiovasc Interv Off J Soc Cardiac Angiography & Interventions. 2015;86 Suppl 1:S45–50. doi:10.1002/ccd.25871.

    Article  Google Scholar 

  43. Beurtheret S, Mordant P, Paoletti X, Marijon E, Celermajer DS, Leger P, et al. Emergency circulatory support in refractory cardiogenic shock patients in remote institutions: a pilot study (the cardiac-RESCUE program). Eur Heart J. 2013;34(2):112–20. doi:10.1093/eurheartj/ehs081.

    Article  PubMed  Google Scholar 

  44. Kar B, Gregoric ID, Basra SS, Idelchik GM, Loyalka P. The percutaneous ventricular assist device in severe refractory cardiogenic shock. J Am Coll Cardiol. 2011;57(6):688–96. doi:10.1016/j.jacc.2010.08.613. This report is the largest study to date of the TandemHeart device in patients with cardiogenic shock. The study identified that the TandemHeart support for LV failure is feasible in high-risk shock populations.

    Article  PubMed  Google Scholar 

  45. Kono S, Nishimura K, Nishina T, Yuasa S, Ueyama K, Hamada C, et al. Autosynchronized systolic unloading during left ventricular assist with a centrifugal pump. J Thorac Cardiovasc Surg. 2003;125(2):353–60. doi:10.1067/mtc.2003.100.

    Article  PubMed  Google Scholar 

  46. Goldstein AH, Pacella JJ, Clark RE. Predictable reduction in left ventricular stroke work and oxygen utilization with an implantable centrifugal pump. Ann Thorac Surg. 1994;58(4):1018–24.

    Article  CAS  PubMed  Google Scholar 

  47. Kapur NK, Paruchuri V, Pham DT, Reyelt L, Murphy B, Beale C, et al. Hemodynamic effects of left atrial or left ventricular cannulation for acute circulatory support in a bovine model of left heart injury. ASAIO J. 2015;61(3):301–6. doi:10.1097/MAT.0000000000000195. This preclinical study demonstrated the hemodynamic difference between the TandemHeart and Impella device platforms. The report identified that the TandemHeart device effectively reduces left ventricular (LV) volumes with minimal effect on LV pressure, while the Impella device reduces both LV pressure and volume.

    Article  PubMed  Google Scholar 

  48. Thiele H, Sick P, Boudriot E, Diederich KW, Hambrecht R, Niebauer J, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26(13):1276–83. doi:10.1093/eurheartj/ehi161.

    Article  PubMed  Google Scholar 

  49. Burkhoff D, Cohen H, Brunckhorst C, O'Neill WW. TandemHeart investigators G. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152(3):469–e1-8. doi:10.1016/j.ahj.2006.05.031. One of the earliest studies superior hemodynamic efficacy with the TandemHeart device over IABP therapy.

    Article  PubMed  Google Scholar 

  50. Benza RL, Miller DP, Gomberg-Maitland M, Frantz RP, Foreman AJ, Coffey CS, et al. Predicting survival in pulmonary arterial hypertension: insights from the registry to evaluate early and long-term pulmonary arterial hypertension disease management (REVEAL). Circulation. 2010;122(2):164–72. doi:10.1161/CIRCULATIONAHA.109.898122.

    Article  PubMed  Google Scholar 

  51. Ghio S, Gavazzi A, Campana C, Inserra C, Klersy C, Sebastiani R, et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37(1):183–8. A landmark study showing that any decline in RV function leads to early morbidity and mortality in patients with chronic heart failure.

    Article  CAS  PubMed  Google Scholar 

  52. Jacobs AK, Leopold JA, Bates E, Mendes LA, Sleeper LA, White H, et al. Cardiogenic shock caused by right ventricular infarction: a report from the SHOCK registry. J Am Coll Cardiol. 2003;41(8):1273–9.

    Article  PubMed  Google Scholar 

  53. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, et al. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24. doi:10.1016/j.jtcvs.2009.11.020. A key report identifying that patients with RV failure after LVAD implantation have worse clinical outcomes compared to LVAD recipients with intact RV function.

    Article  PubMed  Google Scholar 

  54. Zehender M, Kasper W, Kauder E, Schonthaler M, Geibel A, Olschewski M, et al. Right ventricular infarction as an independent predictor of prognosis after acute inferior myocardial infarction. N Engl J Med. 1993;328(14):981–8. doi:10.1056/NEJM199304083281401.

    Article  CAS  PubMed  Google Scholar 

  55. Goldstein JA, Kern MJ. Percutaneous mechanical support for the failing right heart. Cardiol Clin. 2012;30(2):303–10. doi:10.1016/j.ccl.2012.03.007.

    Article  PubMed  Google Scholar 

  56. Haneya A, Philipp A, Puehler T, Rupprecht L, Kobuch R, Hilker M, et al. Temporary percutaneous right ventricular support using a centrifugal pump in patients with postoperative acute refractory right ventricular failure after left ventricular assist device implantation. Eur J Cardiothorac Surg Off J Euro Assoc Cardio-thoracic Sur. 2012;41(1):219–23. doi:10.1016/j.ejcts.2011.04.029.

    Google Scholar 

  57. Atiemo AD, Conte JV, Heldman AW. Resuscitation and recovery from acute right ventricular failure using a percutaneous right ventricular assist device. Catheter Cardiovasc Interv Off J Soc Cardiac Angiography & Interven. 2006;68(1):78–82. doi:10.1002/ccd.20691. The first clinical report describing the use of the TandemHeart device as a right ventricular assist device.

    Article  Google Scholar 

  58. Bajona P, Salizzoni S, Brann SH, Coyne J, Bermudez C, Kormos R, et al. Prolonged use of right ventricular assist device for refractory graft failure following orthotopic heart transplantation. J Thorac Cardiovasc Surg. 2010;139(3):e53–4. doi:10.1016/j.jtcvs.2008.10.042.

    Article  PubMed  Google Scholar 

  59. Prutkin JM, Strote JA, Stout KK. Percutaneous right ventricular assist device as support for cardiogenic shock due to right ventricular infarction. J Invasive Cardiol. 2008;20(7):E215–6.

    PubMed  Google Scholar 

  60. Rajdev S, Benza R, Misra V. Use of tandem heart as a temporary hemodynamic support option for severe pulmonary artery hypertension complicated by cardiogenic shock. J Invasive Cardiol. 2007;19(8):E226–9.

    PubMed  Google Scholar 

  61. Takagaki M, Wurzer C, Wade R, Lee R, Malaisrie SC, McCarthy PM, et al. Successful conversion of TandemHeart left ventricular assist device to right ventricular assist device after implantation of a HeartMate XVE. Ann Thorac Surg. 2008;86(5):1677–9. doi:10.1016/j.athoracsur.2008.04.101.

    Article  PubMed  Google Scholar 

  62. Kiernan MS, Krishnamurthy B, Kapur NK. Percutaneous right ventricular assist via the internal jugular vein in cardiogenic shock complicating an acute inferior myocardial infarction. J Invasive Cardiol. 2010;22(2):E23–6.

    PubMed  Google Scholar 

  63. Kapur NK, Paruchuri V, Jagannathan A, Steinberg D, Chakrabarti AK, Pinto D, et al. Mechanical circulatory support for right ventricular failure. JACC Heart Fail. 2013;1(2):127–34. doi:10.1016/j.jchf.2013.01.007. This is the first large series of patients receiving the TandemHeart device for RV failure. This report identified age, biventricular failure, and bleeding as major predictors of early mortality among TandemHeart RV assist device recipients.

    Article  PubMed  Google Scholar 

  64. Kapur NK, Paruchuri V, Korabathina R, Al-Mohammdi R, Mudd JO, Prutkin J, et al. Effects of a percutaneous mechanical circulatory support device for medically refractory right ventricular failure. J Heart Lung Transplant Off Pub Int Soc Heart Trans. 2011;30(12):1360–7. doi:10.1016/j.healun.2011.07.005.

    Article  Google Scholar 

  65. Loor G, Khani-Hanjani A, Gonzalez-Stawinski GV. Use of RotaFlow (MAQUET) for temporary right ventricular support during implantation of HeartMate II left ventricular assist device. ASAIO J. 2012;58(3):275–7. doi:10.1097/MAT.0b013e318247088c. This is the first clinical report describing the utility of the Impella RP axial flow catheter for RV failure. The study describes the hemodynamic efficacy and safety of this device.

    Article  PubMed  Google Scholar 

  66. Takayama H, Naka Y, Kodali SK, Vincent JA, Addonizio LJ, Jorde UP, et al. A novel approach to percutaneous right-ventricular mechanical support. Eur J Cardiothorac Surg Off J Euro Assoc Cardio-thor Surgery. 2012;41(2):423–6. doi:10.1016/j.ejcts.2011.05.041.

    Article  Google Scholar 

  67. Anderson MB, Goldstein J, Milano C, Morris LD, Kormos RL, Bhama J, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant. 2015;34(12):1549–60.

  68. Jurmann MJ, Siniawski H, Erb M, Drews T, Hetzer R. Initial experience with miniature axial flow ventricular assist devices for postcardiotomy heart failure. Ann Thorac Surg. 2004;77(5):1642–7. doi:10.1016/j.athoracsur.2003.10.013.

    Article  PubMed  Google Scholar 

  69. Rajagopal V, Steahr G, Wilmer CI, Raval NY. A novel percutaneous mechanical biventricular bridge to recovery in severe cardiac allograft rejection. J Heart Lung Transplant Off Pub Int Soc Heart Trans. 2010;29(1):93–5. doi:10.1016/j.healun.2009.09.015.

    Article  Google Scholar 

  70. Kapur NK, Jumean M, Ghuloom A, Aghili N, Vassallo C, Kiernan MS, et al. First successful use of 2 axial flow catheters for percutaneous biventricular circulatory support as a bridge to a durable left ventricular assist device. Circ Heart Fail. 2015;8(5):1006–8. doi:10.1161/CIRCHEARTFAILURE.115.002374.

    Article  PubMed  Google Scholar 

  71. Kapur NK, Jumean MF. Defining the role for percutaneous mechanical circulatory support devices for medically refractory heart failure. Curr Heart Fail Rep. 2013;10(2):177–84. doi:10.1007/s11897-013-0132-1.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. Morine MD.

Ethics declarations

Conflict of Interest

Kevin J. Morine declares no potential conflicts of interest.

Navin K. Kapur reports research support from Heartware Inc., Abiomed Inc., Maquet Inc., and CardiacAssist Inc. He is also the speaker honoraria/consultant of Abiomed Inc., CardiacAssist Inc., Thoratec Inc., Heartware Inc., and Maquet Inc.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morine, K.J., Kapur, N.K. Percutaneous Mechanical Circulatory Support for Cardiogenic Shock. Curr Treat Options Cardio Med 18, 6 (2016). https://doi.org/10.1007/s11936-015-0426-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-015-0426-6

Keywords

Navigation