Skip to main content

Advertisement

Log in

Epigenetics of Sleep and Chronobiology

  • Sleep (M Thorpy, M Billiard, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The circadian clock choreographs fundamental biological rhythms. This system is comprised of the master circadian pacemaker in the suprachiasmatic nucleus and associated pacemakers in other tissues that coordinate complex physiological processes and behaviors, such as sleep, feeding, and metabolism. The molecular circuitry that underlies these clocks and orchestrates circadian gene expression has been the focus of intensive investigation, and it is becoming clear that epigenetic factors are highly integrated into these networks. In this review, we draw attention to the fundamental roles played by epigenetic mechanisms in transcriptional and post-transcriptional regulation within the circadian clock system. We also highlight how alterations in epigenetic factors and mechanisms are being linked with sleep-wake disorders. These observations provide important insights into the pathogenesis and potential treatment of these disorders and implicate epigenetic deregulation in the significant but poorly understood interconnections now emerging between circadian processes and neurodegeneration, metabolic diseases, cancer, and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Mehler MF. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog Neurobiol. 2008;86:305–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Qureshi IA, Mehler MF. Emerging roles of noncoding RNAs in brain evolution, development, plasticity and disease. Nat Rev Neurosci. 2012;13:528–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol [Review]. 2010;28:1057–68.

    Article  CAS  Google Scholar 

  4. Qureshi IA, Mehler MF. Understanding neurological disease mechanisms in the era of epigenetics. JAMA Neurol. 2013;70:703–10.

    Article  PubMed  Google Scholar 

  5. Qureshi IA, Mehler MF. Developing epigenetic diagnostics and therapeutics for brain disorders. Trends Mol Med. 2013;19(12):732–41.

    Article  CAS  PubMed  Google Scholar 

  6. Qureshi IA, Mehler MF. Long noncoding RNAs: novel targets for nervous system disease diagnosis and therapy. Neurotherapeutics. 2013;10:632–46.

    Article  CAS  PubMed  Google Scholar 

  7. Masri S, Sassone-Corsi P. The circadian clock: a framework linking metabolism, epigenetics and neuronal function. Nat Rev Neurosci. 2012;14:69–75.

    Article  PubMed  Google Scholar 

  8. Albrecht U. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 2012;74:246–60.

    Article  CAS  PubMed  Google Scholar 

  9. Lim C, Allada R. Emerging roles for post-transcriptional regulation in circadian clocks. Nat Neurosci. 2013;16:1544–50.

    Article  CAS  PubMed  Google Scholar 

  10. Mellen M, Ayata P, Dewell S, et al. MeCP2 Binds to 5hmC enriched within active genes and accessible chromatin in the nervous system. Cell. 2012;151:1417–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Jin SG, Wu X, Li AX, Pfeifer GP. Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res. 2011;39:5015–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Bonsch D, Hothorn T, Krieglstein C, et al. Daily variations of homocysteine concentration may influence methylation of DNA in normal healthy individuals. Chronobiol Int. 2007;24:315–26.

    Article  PubMed  Google Scholar 

  13. Li JZ, Bunney BG, Meng F, et al. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Proc Natl Acad Sci U S A. 2013;110:9950–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Maekawa F, Shimba S, Takumi S, et al. Diurnal expression of Dnmt3b mRNA in mouse liver is regulated by feeding and hepatic clockwork. Epigenetics. 2012;7:1046–56.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Zhou Z, Hong EJ, Cohen S, et al. Brain-specific phosphorylation of MeCP2 regulates activity-dependent Bdnf transcription, dendritic growth, and spine maturation. Neuron. 2006;52:255–69.

    Article  CAS  PubMed  Google Scholar 

  16. Belden WJ, Lewis ZA, Selker EU, et al. CHD1 remodels chromatin and influences transient DNA methylation at the clock gene frequency. PLoS Genet. 2011;7:e1002166.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Ji Y, Qin Y, Shu H, Li X. Methylation analyses on promoters of mPer1, mPer2, and mCry1 during perinatal development. Biochem Biophys Res Commun. 2010;391:1742–7.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang L, Lin QL, Lu L, et al. Tissue-specific modification of clock methylation in aging mice. Eur Rev Med Pharmacol Sci. 2013;17:1874–80.

    CAS  PubMed  Google Scholar 

  19. Nakatome M, Orii M, Hamajima M, et al. Methylation analysis of circadian clock gene promoters in forensic autopsy specimens. Leg Med. 2011;13:205–9.

    Article  CAS  Google Scholar 

  20. Neumann O, Kesselmeier M, Geffers R, et al. Methylome analysis and integrative profiling of human HCCs identify novel protumorigenic factors. Hepatology. 2012;56:1817–27.

    Article  CAS  PubMed  Google Scholar 

  21. Hanoun M, Eisele L, Suzuki M, et al. Epigenetic silencing of the circadian clock gene CRY1 is associated with an indolent clinical course in chronic lymphocytic leukemia. PLoS One. 2012;7:e34347.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Hoffman AE, Zheng T, Yi CH, et al. The core circadian gene Cryptochrome 2 influences breast cancer risk, possibly by mediating hormone signaling. Cancer Prev Res. 2010;3:539–48.

    Article  CAS  Google Scholar 

  23. Taniguchi H, Fernandez AF, Setien F, et al. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res. 2009;69:8447–54.

    Article  CAS  PubMed  Google Scholar 

  24. Milagro FI, Gomez-Abellan P, Campion J, et al. CLOCK, PER2 and BMAL1 DNA methylation: association with obesity and metabolic syndrome characteristics and monounsaturated fat intake. Chronobiol Int. 2012;29:1180–94.

    Article  CAS  PubMed  Google Scholar 

  25. Wither RG, Colic S, Wu C, et al. Daily rhythmic behaviors and thermoregulatory patterns are disrupted in adult female MeCP2-deficient mice. PLoS One. 2012;7:e35396.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Nanduri J, Makarenko V, Reddy VD, et al. Epigenetic regulation of hypoxic sensing disrupts cardiorespiratory homeostasis. Proc Natl Acad Sci U S A. 2012;109:2515–20. This paper demonstrated that DNA methylation plays a role in the neonatal programming of hypoxic sensitivity and subsequent autonomic deregulation during adulthood.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Young D, Nagarajan L, de Klerk N, et al. Sleep problems in Rett syndrome. Brain Dev. 2007;29:609–16.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Winkelmann J, Lin L, Schormair B, et al. Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet. 2012;21:2205–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Pedroso JL, Povoas Barsottini OG, Lin L, et al. A novel de novo exon 21 DNMT1 mutation causes cerebellar ataxia, deafness, and narcolepsy in a Brazilian patient. Sleep. 2013;36:1257–9, 59A.

    PubMed Central  PubMed  Google Scholar 

  30. Syeda F, Fagan RL, Wean M, et al. The replication focus targeting sequence (RFTS) domain is a DNA-competitive inhibitor of Dnmt1. J Biol Chem. 2011;286:15344–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bollati V, Baccarelli A, Sartori S, et al. Epigenetic effects of shiftwork on blood DNA methylation. Chronobiol Int. 2010;27:1093–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Zhu Y, Stevens RG, Hoffman AE, et al. Epigenetic impact of long-term shiftwork: pilot evidence from circadian genes and whole-genome methylation analysis. Chronobiol Int. 2011;28:852–61.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Shi F, Chen X, Fu A, et al. Aberrant DNA methylation of miR-219 promoter in long-term night shiftworkers. Environ Mol Mutagen. 2013;54:406–13.

    Article  CAS  PubMed  Google Scholar 

  34. Jacobs DI, Hansen J, Fu A, et al. Methylation alterations at imprinted genes detected among long-term shiftworkers. Environ Mol Mutagen. 2013;54:141–6.

    Article  CAS  PubMed  Google Scholar 

  35. Kim J, Bhattacharjee R, Khalyfa A, et al. DNA methylation in inflammatory genes among children with obstructive sleep apnea. Am J Respir Crit Care Med. 2012;185:330–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Rotter A, Asemann R, Decker A, et al. Orexin expression and promoter-methylation in peripheral blood of patients suffering from major depressive disorder. J Affect Disord. 2011;131:186–92.

    Article  CAS  PubMed  Google Scholar 

  37. Lin Q, Ding H, Zheng Z, et al. Promoter methylation analysis of seven clock genes in Parkinson's disease. Neurosci Lett. 2012;507:147–50.

    Article  CAS  PubMed  Google Scholar 

  38. Liu HC, Hu CJ, Tang YC, Chang JG. A pilot study for circadian gene disturbance in dementia patients. Neurosci Lett. 2008;435:229–33.

    Article  CAS  PubMed  Google Scholar 

  39. Hirayama J, Sahar S, Grimaldi B, et al. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature. 2007;450:1086–90. This study revealed that the CLOCK protein serves as a histone acetyltransferase enzyme and that this activity plays a role in mediating circadian gene expression.

    Article  CAS  PubMed  Google Scholar 

  40. Etchegaray JP, Lee C, Wade PA, Reppert SM. Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature. 2003;421:177–82.

    Article  CAS  PubMed  Google Scholar 

  41. Valekunja UK, Edgar RS, Oklejewicz M, et al. Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proc Natl Acad Sci U S A. 2013;110:1554–9. This analysis showed that the expression and function of the mixed lineage leukemia 3, a histone-modifying enzyme, is controlled by the circadian clock and is involved in regulating rhythmic gene expression on a genome-wide scale.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Katada S, Sassone-Corsi P. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat Struct Mol Biol. 2010;17:1414–21.

    Article  CAS  PubMed  Google Scholar 

  43. DiTacchio L, Le HD, Vollmers C, et al. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science. 2011;333:1881–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Cha J, Zhou M, Liu Y. CATP is a critical component of the Neurospora circadian clock by regulating the nucleosome occupancy rhythm at the frequency locus. EMBO Rep. 2013;14:923–30.

    Article  CAS  PubMed  Google Scholar 

  45. Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD + -dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134:329–40. This paper reported that NAD + -dependent sirtuin 1 is a histone deacetylase, which is involved in regulating circadian gene expression, and whose enzymatic activity is, both, dependent on cellular metabolic state and subject to circadian regulation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Asher G, Gatfield D, Stratmann M, et al. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell. 2008;134:317–28.

    Article  CAS  PubMed  Google Scholar 

  47. Nakahata Y, Sahar S, Astarita G, et al. Circadian control of the NA + salvage pathway by CLOCK-SIRT1. Science. 2009;324:654–7.

    Article  CAS  PubMed  Google Scholar 

  48. Ramsey KM, Yoshino J, Brace CS, et al. Circadian clock feedback cycle through NAMPT-mediated NAD + biosynthesis. Science. 2009;324:651–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Singh N, Lorbeck MT, Zervos A, et al. The histone acetyltransferase Elp3 plays in active role in the control of synaptic bouton expansion and sleep in Drosophila. J Neurochem. 2010;115:493–504.

    Article  CAS  PubMed  Google Scholar 

  50. Pirooznia SK, Chiu K, Chan MT, et al. Epigenetic regulation of axonal growth of Drosophila pacemaker cells by histone acetyltransferase tip60 controls sleep. Genetics. 2012;192:1327–45.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Gottlieb DJ, O'Connor GT, Wilk JB. Genome-wide association of sleep and circadian phenotypes. BMC Med Genet. 2007;8 Suppl 1:S9.

    Article  PubMed Central  PubMed  Google Scholar 

  52. Kleefstra T, Smidt M, Banning MJ, et al. Disruption of the gene Euchromatin Histone Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome. J Med Genet. 2005;42:299–306.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Kleefstra T, Brunner HG, Amiel J, et al. Loss-of-function mutations in euchromatin histone methyl transferase 1 (EHMT1) cause the 9q34 subtelomeric deletion syndrome. Am J Hum Genet. 2006;79:370–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Verhoeven WM, Kleefstra T, Egger JI. Behavioral phenotype in the 9q subtelomeric deletion syndrome: a report about two adult patients. Am J Med Genet B Neuropsychiatr Genet. 2010;153B:536–41.

    CAS  PubMed  Google Scholar 

  55. Williams SR, Aldred MA, Der Kaloustian VM, et al. Haploinsufficiency of HDAC4 causes brachydactyly mental retardation syndrome, with brachydactyly type E, developmental delays, and behavioral problems. Am J Hum Genet. 2010;87:219–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Villavicencio-Lorini P, Klopocki E, Trimborn M, et al. Phenotypic variant of Brachydactyly-mental retardation syndrome in a family with an inherited interstitial 2q37.3 microdeletion including HDAC4. Eur J Hum Genet. 2013;21:743–8.

    Article  CAS  PubMed  Google Scholar 

  57. Williams SR, Zies D, Mullegama SV, et al. Smith-Magenis syndrome results in disruption of CLOCK gene transcription and reveals an integral role for RAI1 in the maintenance of circadian rhythmicity. Am J Hum Genet. 2012;90:941–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Deardorff MA, Bando M, Nakato R, et al. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature. 2012;489:313–7. This investigation identified loss-of-function mutations in the histone deacetylase 8 gene that deregulate the cohesin complex and are responsible for causing Cornelia de Lange syndrome.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Rajan R, Benke JR, Kline AD, et al. Insomnia in Cornelia de Lange syndrome. Int J Pediatr Otorhinolaryngol. 2012;76:972–5.

    Article  PubMed  Google Scholar 

  60. Stavinoha RC, Kline AD, Levy HP, et al. Characterization of sleep disturbance in Cornelia de Lange Syndrome. Int J Pediatr Otorhinolaryngol. 2011;75:215–8.

    Article  PubMed  Google Scholar 

  61. Askarian-Amiri ME, Crawford J, French JD, et al. SNORD-host RNA Zfas1 is a regulator of mammary development and a potential marker for breast cancer. RNA. 2011;17:878–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Clokie SJ, Lau P, Kim HH, et al. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase. J Biol Chem. 2012;287:25312–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Xu S, Witmer PD, Lumayag S, et al. MicroRNA (miRNA) transcriptome of mouse retina and identification of a sensory organ-specific miRNA cluster. J Biol Chem. 2007;282:25053–66.

    Article  CAS  PubMed  Google Scholar 

  64. Sire C, Moreno AB, Garcia-Chapa M, et al. Diurnal oscillation in the accumulation of Arabidopsis microRNAs, miR167, miR168, miR171 and miR398. FEBS Lett. 2009;583:1039–44.

    Article  CAS  PubMed  Google Scholar 

  65. Yang M, Lee JE, Padgett RW, Edery I. Circadian regulation of a limited set of conserved microRNAs in Drosophila. BMC Genomics. 2008;9:83.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Vodala S, Pescatore S, Rodriguez J, et al. The oscillating miRNA 959-964 cluster impacts Drosophila feeding time and other circadian outputs. Cell Metab. 2012;16:601–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Davis CJ, Bohnet SG, Meyerson JM, Krueger JM. Sleep. loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation. Neurosci Lett. 2007;422:68–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Davis CJ, Clinton JM, Krueger JM. MicroRNA 138, let-7b, and 125a inhibitors differentially alter sleep and EEG delta-wave activity in rats. J Appl Physiol. 2012;113:1756–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Cheng HY, Papp JW, Varlamova O, et al. microRNA modulation of circadian-clock period and entrainment. Neuron. 2007;54:813–29. This paper provided the first, robust mechanistic evidence that environmentally responsive microRNA activity is involved in the circadian clock within the suprachiasmatic nucleus.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Gatfield D, Le Martelot G, Vejnar CE, et al. Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev. 2009;23:1313–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Na YJ, Sung JH, Lee SC, et al. Comprehensive analysis of microRNA-mRNA co-expression in circadian rhythm. Exp Mol Med. 2009;41:638–47.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Kadener S, Menet JS, Sugino K, et al. A role for microRNAs in the Drosophila circadian clock. Genes Dev. 2009;23:2179–91.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Nagel R, Clijsters L, Agami R. The miRNA-192/194 cluster regulates the Period gene family and the circadian clock. FEBS J. 2009;276:5447–55.

    Article  CAS  PubMed  Google Scholar 

  74. Shende VR, Goldrick MM, Ramani S, Earnest DJ. Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS One. 2011;6:e22586.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. Alvarez-Saavedra M, Antoun G, Yanagiya A, et al. miRNA-132 orchestrates chromatin remodeling and translational control of the circadian clock. Hum Mol Genet. 2011;20:731–51.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Zhang Y, Emery P. GW182 controls Drosophila circadian behavior and PDF-receptor signaling. Neuron. 2013;78:152–65.

    Article  CAS  PubMed  Google Scholar 

  77. Lee KH, Kim SH, Lee HR, et al. MicroRNA-185 oscillation controls circadian amplitude of mouse Cryptochrome 1 via translational regulation. Mol Biol Cell. 2013;24:2248–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Chen R, D'Alessandro M, Lee C. miRNAs are required for generating a time delay critical for the circadian oscillator. Curr Biol. 2013;23:1959–68.

    Article  CAS  PubMed  Google Scholar 

  79. Hughes ME, Grant GR, Paquin C, et al. Deep sequencing the circadian and diurnal transcriptome of Drosophila brain. Genome Res. 2012;22:1266–81. This study performed RNA sequencing of Drosophila brain and identified hundreds of transcripts with circadian expression profiles, including many noncoding RNAs and those that were targets of RNA editing.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Coon SL, Munson PJ, Cherukuri PF, et al. Circadian changes in long noncoding RNAs in the pineal gland. Proc Natl Acad Sci U S A. 2012;109:13319–24. This investigation of long noncoding RNA profiles in the rat pineal gland found diurnal expression patterns for 112 transcripts that were responsive to light exposure and regulated by norepinephrine signaling from the suprachiasmatic nucleus.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Menet JS, Rodriguez J, Abruzzi KC, Rosbash M. Nascent-Seq reveals novel features of mouse circadian transcriptional regulation. ELife. 2012;1:e00011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Davis CJ, Clinton JM, Taishi P, et al. MicroRNA 132 alters sleep and varies with time in brain. J Appl Physiol. 2011;111:665–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Soshnev AA, Ishimoto H, McAllister BF, et al. A conserved long noncoding RNA affects sleep behavior in Drosophila. Genetics. 2011;189:455–68.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Saus E, Soria V, Escaramis G, et al. Genetic variants and abnormal processing of pre-miR-182, a circadian clock modulator, in major depression patients with late insomnia. Hum Mol Genet. 2010;19:4017–25.

    Article  CAS  PubMed  Google Scholar 

  85. Powell WT, Coulson RL, Crary FK, et al. A Prader-Willi locus lncRNA cloud modulates diurnal genes and energy expenditure. Hum Mol Genet. 2013;22:4318–28. This analysis of the 116HG long noncoding RNA encoded by the imprinted Prader-Willi locus suggested that this factor is involved in transcriptional regulation of key metabolic and clock genes, in postnatal neurons and during sleep, via the formation of a novel subnuclear domain.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  86. Jepson JE, Savva YA, Yokose C, et al. Engineered alterations in RNA editing modulate complex behavior in Drosophila: regulatory diversity of adenosine deaminase acting on RNA (ADAR) targets. J Biol Chem. 2011;286:8325–37.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Fustin JM, Doi M, Yamaguchi Y, et al. RNA-methylation-dependent RNA processing controls the speed of the circadian clock. Cell. 2013;155:793–806. This paper demonstrated that post-transcriptional RNA methylation is a novel component of the circadian clock responsible for targeting core clock transcripts and thereby regulating the length of the circadian period.

    Article  CAS  PubMed  Google Scholar 

  88. Qureshi IA, Mehler MF. Towards a 'systems'-level understanding of the nervous system and its disorders. Trends Neurosci. 2013;36:674–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Irfan A. Qureshi declares that he has no conflict of interest. Mark F. Mehler is supported by grants from the National Institutes of Health (NS071571, HD071593, MH66290), as well as by the F.M. Kirby, Alpern Family, Harold and Isabel Feld and Roslyn and Leslie Goldstein Foundations.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark F. Mehler.

Additional information

This article is part of the Topical Collection on Sleep

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qureshi, I.A., Mehler, M.F. Epigenetics of Sleep and Chronobiology. Curr Neurol Neurosci Rep 14, 432 (2014). https://doi.org/10.1007/s11910-013-0432-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0432-6

Keywords

Navigation