Skip to main content

Advertisement

Log in

Update on Herpes Virus Infections of the Nervous System

  • Infection (J Berger, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Herpes simplex viruses types 1 and 2 (HSV-1 and HSV-2) are human neurotropic viruses that establish latent infection in dorsal root ganglia (DRG) for the entire life of the host. From the DRG they can reactivate to cause human morbidity and mortality. Although they vary, in part, in the clinical disorders they cause, and in their molecular structure, they share several features that govern the biology of their infection of the human nervous system. HSV-1 is the causative agent of encephalitis, corneal blindness, and several peripheral nervous system disorders; HSV-2 is responsible for meningoencephalitis in neonates and meningitis in adults. The biology of their ability to establish latency, maintain it for the entire life of the host, reactivate, and cause primary and recurrent disease is being studied in animal models and in humans. This review covers recent advances in understanding the biology and pathogenesis of HSV-related disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gilden DH, Mahalingam R, Cohrs RJ, Tyler KL. Herpesvirus infections of the nervous system. Nat Clin Pract Neurol. 2007;3:82–94.

    Article  PubMed  CAS  Google Scholar 

  2. Dolan A, Jamieson FE, Cunningham C. The genome sequence of herpes simplex virus type 2. J Virol. 1998;72:2010–21.

    PubMed  CAS  Google Scholar 

  3. McGeoch DJ, Dolan A, Donald S, Brauer DHK. Complete DNA sequence of the short repeat region in the genome of herpes simplex virus type 1. Nucl Acids Res. 1986;14:1727–45.

    Article  PubMed  CAS  Google Scholar 

  4. McGeoch DJ. The genomes of the human herpesviruses: contents, relationships, and evolution. Annu Rev Microbiol. 1989;43:235–65.

    Article  PubMed  CAS  Google Scholar 

  5. • Egan KP, Wu S, Wigdahl B, Jennings SR. Immunological control of herpes simplex virus infections. J Neurovirol. 2013;19:328–45. Comprehensive description of immune mechanisms involved in latency and virus control.

    Article  PubMed  CAS  Google Scholar 

  6. Kennedy PGE, Chaudhuri A. Herpes simplex encephalitis. J Neurol Neurosurg Psychiatry. 2002;73:237–38.

    Article  PubMed  CAS  Google Scholar 

  7. Steiner I. Herpes simplex virus meningoencephalitis. In: Jackson AC, editor. Viral infections of the human nervous system. Birkhäuser advances in infectious diseases. Basel: Springer; 2013. pp. 47–63.

  8. Abaitua F, Zia R, Hollinshead M, O'Hare P. Polarised cell migration during cell-to-cell transmission of herpes simplex virus in human skin keratinocytes. J Virol. 2013;87:7921–32.

    Article  PubMed  CAS  Google Scholar 

  9. Lee JI, Sollars PJ, Baver SB, Pickard GE. A herpesvirus encoded deubiquitinase is a novel neuroinvasive determinant. PLoS Pathogens. 2009;5:e1000387.

    Article  PubMed  Google Scholar 

  10. Böttcher S, Maresch C, Granzow H, Klupp BG, Teifke JP, Mettenleiter TC. Mutagenesis of the active-site cysteine in the ubiquitin-specific protease contained in large tegument protein pUL36 of pseudorabies virus impairs viral replication in vitro and neuroinvasion in vivo. J Virol. 2008;82:6009–16.

    Article  PubMed  Google Scholar 

  11. Antinone SE, Smith GA. Retrograde axon transport of herpes simplex virus and pseudorabies virus: a live-cell comparative analysis. J Virol. 2010;84:1504–12.

    Article  PubMed  CAS  Google Scholar 

  12. Feierbach B, Bisher M, Goodhouse J, Enquist LW. In Vitro analysis of transneuronal spread of an alphaherpesvirus infection in peripheral nervous system neurons. J Virol. 2007;81:6846–57.

    Article  PubMed  CAS  Google Scholar 

  13. Granstedt AE, Brunton BW, Enquist LW. (2013) Imaging the transport dynamics of single alphaherpesvirus particles in intact peripheral nervous system explants from infected mice. mBio 4: e00358–13–e00358–13.

  14. Bertke AS, Apakupakul K, Ma A, Imai Y, Gussow AM, Wang K, et al. LAT region factors mediating differential neuronal tropism of HSV-1 and HSV-2 do not act in trans. PLoS One. 2012;7:e53281.

    Article  PubMed  CAS  Google Scholar 

  15. Bloom DC, Kwiatkowski DL. HSV-1 latency and the roles of the LATs. In Weller (ed.) Alphaherpesviruses: molecular virology. Caister Academic Press; 2011, pp. 286–312.

  16. Bertke AS, Swanson SM, Chen J, Imai Y, Kinchington PR, Margolis TP. A5-positive primary sensory neurons are nonpermissive for productive infection with herpes simplex virus 1 in vitro. J Virol. 2011;85:6669–77.

    Article  PubMed  CAS  Google Scholar 

  17. Knipe DM, Cliffe A. Chromatin control of herpes simplex virus lytic and latent infection. Nat Rev Micro. 2008;6:211–21.

    Article  CAS  Google Scholar 

  18. Bloom DC, Giordani NV, Kwiatkowski DL. Epigenetic regulation of latent HSV-1 gene expression. Biochim Biophys Acta. 2010;1799:246–56.

    Article  PubMed  CAS  Google Scholar 

  19. Su Y-H, Moxley MJ, Ng AK, Lin J, Jordan R, Fraser NW, et al. Stability and circularization of herpes simplex virus type 1 genomes in quiescently infected PC12 cultures. J Gen Virol. 2002;83:2943–50.

    PubMed  CAS  Google Scholar 

  20. Steiner I, Spivack JG, O'Boyle DR, Lavi E, Fraser NW. Latent herpes simplex virus type 1 transcription in human trigeminal ganglia. J Virol. 1988;62:3493–6.

    PubMed  CAS  Google Scholar 

  21. Stevens JG, Wagner EK, Devi-Rao GB, Cook ML, Feldman LT. RNA complementary to a herpesvirus alpha gene mRNA is prominent in latently infected neurons. Science. 1987;235:1056–9.

    Article  PubMed  CAS  Google Scholar 

  22. Trousdale MD, Steiner I, Spivack JG, Deshmane SL, Brown SM, MacLean AR, et al. In vivo and in vitro reactivation impairment of a herpes simplex virus type 1 latency-associated transcript variant in a rabbit eye model. J Virol. 1991;65:6989–93.

    PubMed  CAS  Google Scholar 

  23. Steiner I, Spivack JG, Lirette RP, Brown SM, MacLean AR, Subak-Sharpe JH, et al. Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EMBO J. 1989;8:505–11.

    PubMed  CAS  Google Scholar 

  24. Carpenter D, Hsiang C, Brown DJ, Jin L, Osorio N, BenMohamed L, et al. Stable cell lines expressing high levels of the herpes simplex virus type 1 LAT are refractory to caspase 3 activation and DNA laddering following cold shock induced apoptosis. Virology. 2007;369:12–8.

    Article  PubMed  CAS  Google Scholar 

  25. Branco FJ, Fraser NW. Herpes simplex virus type 1 latency-associated transcript expression protects trigeminal ganglion neurons from apoptosis. J Virol. 2005;79:9019–25.

    Article  PubMed  CAS  Google Scholar 

  26. Perng G-C, Jones C. Towards an understanding of the herpes simplex virus type 1 latency-reactivation cycle. In Solbrig (ed.) Interdisciplinary perspectives on infectious diseases. Hindawi Publishing Corporation;2010, pp. 1–18.

  27. Jurak I, Silverstein LB, Sharma M, Coen DM. Herpes simplex virus is equipped with RNA-and protein-based mechanisms to repress expression of ATRX, an effector of intrinsic immunity. J Virol. 2012;86:10093–102.

    Article  PubMed  CAS  Google Scholar 

  28. •• Nicoll MP, Proença JT, Efstathiou S. The molecular basis of herpes simplex virus latency. FEMS Microbiol Rev. 2012;36:684–705. Latest experimental research on the control of herpes virus latency in neurons.

    Article  PubMed  CAS  Google Scholar 

  29. Held K, Derfuss T. Control of HSV-1 latency in human trigeminal ganglia—current overview. J Neurovirol. 2011;17:518–27.

    Article  PubMed  Google Scholar 

  30. Goldenberg D, Mador N, Ball MJ, Panet A, Steiner I. The abundant latency-associated transcripts of herpes simplex virus type 1 are bound to polyribosomes in cultured neuronal cells and during latent infection in mouse trigeminal ganglia. J Virol. 1997;71:2897–904.

    PubMed  CAS  Google Scholar 

  31. Feldman LT. Spontaneous molecular reactivation of herpes simplex virus type 1 latency in mice. Proc Natl Acad Sci U S A. 2002;99:978–83.

    Article  PubMed  CAS  Google Scholar 

  32. Wysocka J, Herr W. The herpes simplex virus VP16-induced complex: the makings of a regulatory switch. Trends Biochem Sci. 2003;28:294–304.

    Article  PubMed  CAS  Google Scholar 

  33. Thompson RL, Preston CM, Sawtell NM. De novo synthesis of VP16 coordinates the exit from HSV latency in vivo. PLoS Pathogens. 2009;5:e1000352.

    Article  PubMed  Google Scholar 

  34. Huang J, Lazear HM, Friedman HM. Completely assembled virus particles detected by transmission electron microscopy in proximal and mid-axons of neurons infected with herpes simplex virus type 1, herpes simplex virus type 2 and pseudorabies virus. Virology. 2011;409:12–6.

    Article  PubMed  CAS  Google Scholar 

  35. Wisner TW, Sugimoto K, Howard PW, Kawaguchi Y, Johnson DC. Anterograde transport of herpes simplex virus capsids in neurons by both separate and married mechanisms. J Virol. 2011;85:5919–28.

    Article  PubMed  CAS  Google Scholar 

  36. Karasneh GA, Shukla D. Herpes simplex virus infects most cell types in vitro: clues to its success. Virol J. 2011;8:481.

    Article  PubMed  CAS  Google Scholar 

  37. Kaye S, Choudhary A. Herpes simplex keratitis. Prog Retin Eye Res. 2006;25:355–80.

    Article  PubMed  Google Scholar 

  38. • Steiner I. Herpes simplex virus encephalitis: new infection or reactivation? Curr Opin Neurol. 2011;24:268–74. Discussion about the etiology of herpes encephalitis and if to consider a primary injection or reactivation.

    Article  PubMed  Google Scholar 

  39. Solomon T, Michael B, Smith P, Sanderson F. Management of suspected viral encephalitis in adults–Association of British Neurologists and British Infection Association National Guidelines. J Infect. 2012;64:347–73.

    Article  PubMed  CAS  Google Scholar 

  40. Whitley RJ, Alford CA, Hirsch MS, Schooley RT, Luby JP, Aoki FY, et al. Vidarabine versus acyclovir therapy in herpes simplex encephalitis. N Engl J Med. 1986;314:144–9.

    Article  PubMed  CAS  Google Scholar 

  41. Whitley RJ. Viral encephalitis. N Engl J Med. 1990;323:242–50.

    Article  PubMed  CAS  Google Scholar 

  42. Kennedy PGE, Steiner I. Recent issues in herpes simplex encephalitis. J Neurovirol. 2013;19:346–50.

    Article  PubMed  Google Scholar 

  43. Landau Z, Miller E, Roif M. Recurrent herpes simplex encephalitis. Eur J Int Med. 2005;16:513–14.

    Article  Google Scholar 

  44. Yamada S, Kameyama T, Nagaya S, Hashizume Y, Yoshida M. Relapsing herpes simplex encephalitis: pathological confirmation of viral reactivation. J Neurol Neurosurg Psychiatry. 2003;74:262–4.

    Article  PubMed  CAS  Google Scholar 

  45. Whitley RJ. Herpes simplex virus. In: Sheld, Whitley, and Marra (eds.) Infections of the central nervous system. Lippincott Williams & Wilkins; 2004, pp. 123–44.

  46. Whitley RJ. Herpes simplex encephalitis clinical assessment. JAMA. 1982;247:317–20.

    Article  PubMed  CAS  Google Scholar 

  47. Baskin HJ, Hedlund G. Neuroimaging of herpesvirus infections in children. Pediatr Radiol. 2007;37:949–63.

    Article  PubMed  Google Scholar 

  48. Castillo M, Rumboldt Z. Herpes simplex encephalitis. In Rumboldt et al. (ed.) Brain imaging with MRI and CT: an image pattern approach. Cambridge University Press, New York 2012, pp. 41–2

  49. Esiri MM. Herpes simplex encephalitis: an immunohistological study of the distribution of viral antigen within the brain. J Neurol Sci. 1982;54:209–26.

    Article  PubMed  CAS  Google Scholar 

  50. Tissari J, Sirén J, Meri S, Julkunen I, Matikainen S. IFN-α enhances TLR3-mediated antiviral cytokine expression in human endothelial and epithelial cells by up-regulating TLR3 expression. J Immunol. 2005;174:4289–94.

    PubMed  CAS  Google Scholar 

  51. •• Okun E, Griffioen KJ, Mattson MP. Toll-like receptor signaling in neural plasticity and disease. Trends Neurosci. 2011;34:269–81. Very comprehensive summary of Toll-like receptor functions.

    Article  PubMed  CAS  Google Scholar 

  52. Okun E, Griffioen KJ, Lathia JD, Tang SC. Toll-like receptors in neurodegeneration. Brain Res. 2009;59:278–92.

    Article  CAS  Google Scholar 

  53. Guo Y, Audry M, Ciancanelli M, Alsina L, Azevedo J, Herman M, et al. Herpes simplex virus encephalitis in a patient with complete TLR3 deficiency: TLR3 is otherwise redundant in protective immunity. J Exp Med. 2011;208:2083–98.

    Article  PubMed  CAS  Google Scholar 

  54. Sancho-Shimizu V, deDiego RP, Lorenzo L, Halwani R, et al. Herpes simplex encephalitis in children with autosomal recessive and dominant TRIF deficiency. J Clin Invest. 2011;121:4889.

    Article  PubMed  CAS  Google Scholar 

  55. Herman M, Ciancanelli M, Ou YH, Lorenzo L, Klaudel-Dreszler M, Pauwels E, et al. Heterozygous TBK1 mutations impair TLR3 immunity and underlie herpes simplex encephalitis of childhood. J Exp Med. 2012;209:1567–82.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang S-Y, Jouanguy E, Ugolini S, Smahi A, Elain G, Romero P, et al. TLR3 deficiency in patients with herpes simplex encephalitis. Science. 2007;317:1522–7.

    Article  PubMed  CAS  Google Scholar 

  57. Leib DA. Herpes simplex virus encephalitis: Toll-free access to the brain. Cell Host Microbe. 2012;12:731–2.

    Article  PubMed  CAS  Google Scholar 

  58. Lafaille FG, Pessach IM, Zhang S-Y, Ciancanelli MJ, Herman M, Abhyankar A, et al. Impaired intrinsic immunity to HSV-1 in human iPSC-derived TLR3-deficient CNS cells. Nature. 2012;491:769–73.

    PubMed  CAS  Google Scholar 

  59. Zhang S-Y, Herman M, Ciancanelli MJ, de Diego RP, Sancho-Shimizu V, Abel L, et al. TLR3 immunity to infection in mice and humans. Curr Opin Immunol. 2013;25:19–33.

    Article  PubMed  Google Scholar 

  60. Perales-Linares R, Navas-Martin S. Toll-like receptor 3 in viral pathogenesis: friend or foe? Immunology. 2013;140:153–67.

    Article  PubMed  CAS  Google Scholar 

  61. Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol. 2006;6:940–52.

    Article  PubMed  CAS  Google Scholar 

  62. Smyth MJ, Trapani JA. Granzymes: exogenous porteinases that induce target cell apoptosis. Immunol Today. 1995;16:202–6.

    Article  PubMed  CAS  Google Scholar 

  63. Barber GN. Host defense, viruses and apoptosis. Cell Death Differ. 2001;8:113–26.

    Article  PubMed  CAS  Google Scholar 

  64. Joly E, Mucke L, Oldstone M. Viral persistence in neurons explained by lack of major histocompatibility class I expression. Science. 1991;253:1283–5.

    Article  PubMed  CAS  Google Scholar 

  65. Oldstone MB. Molecular anatomy of viral persistence. J Virol. 1991;65:6381.

    PubMed  CAS  Google Scholar 

  66. Knickelbein JE, Hendricks RL, Charukamnoetkanok P. Management of herpes simplex virus stromal keratitis: an evidence-based review. Survey Ophthalmol. 2009;54:226–34.

    Article  Google Scholar 

  67. Maini MK, Boni C, Lee CK, Larrubia JR, Reignat S, Ogg GS, et al. The role of virus-specific Cd8+ cells in liver damage and viral control during persistent hepatitis b virus infection. J Exp Med. 2000;191:1269–80.

    Article  PubMed  CAS  Google Scholar 

  68. Cerny A, Chisari FV. Pathogenesis of chronic hepatitis C: Immunological features of hepatic injury and viral persistence. Hepatology. 1999;30:595–601.

    Article  PubMed  CAS  Google Scholar 

  69. Steiner I, Budka H, Chaudhuri A, Koskiniemi M, Sainio K, Salonen O, et al. Viral meningoencephalitis: a review of diagnostic methods and guidelines for management. Eur J Neurol. 2010;17:999–e57.

    Article  PubMed  CAS  Google Scholar 

  70. Cinque P, Cleator GM, Weber T, Monteyne P, Sindic CJ, van Loon AM. The role of laboratory investigation in the diagnosis and management of patients with suspected herpes simplex encephalitis: a consensus report. The EU Concerted Action on Virus Meningitis and Encephalitis. J Neurol Neurosurg Psychiatry. 1996;61:339–45.

    Article  PubMed  CAS  Google Scholar 

  71. Benninger F, Steiner I. Steroids in bacterial meningitis: yes. J Neural Transm. 2013;120:339–42.

    Article  PubMed  CAS  Google Scholar 

  72. Quagliarello V, Scheld WM. Infectious disease: do steroids benefit patients with bacterial meningitis? Nat Rev Neurol. 2010;:529–30.

  73. Jacobs DH. Herpes simplex virus encephalitis following corticosteroids and cranial irradiation. Neurology. 1999;52:1106.

    Article  Google Scholar 

  74. Thompson KA, Blessing WW, Wesselingh SL. Herpes simplex replication and dissemination is not increased by corticosteroid treatment in a rat model of focal Herpes encephalitis. J Neurovirol. 2000;6:25–32.

    Article  PubMed  CAS  Google Scholar 

  75. Meyding-Lamadé UK, Oberlinner C, Rau PR. Experimental herpes simplex virus encephalitis: a combination therapy of acyclovir and glucocorticoids reduces long-term magnetic resonance imaging abnormalities. J Neurovirol. 2003;9:118–25.

    PubMed  Google Scholar 

  76. Almalki DM, Al-Suwaidan FB. Steroid pulse therapy in herpes simplex encephalitis. Neurosciences (Riyadh). 2013;18:276–7.

    PubMed  Google Scholar 

  77. Kamei S. Evaluation of combination therapy using aciclovir and corticosteroid in adult patients with herpes simplex virus encephalitis. J Neurol Neurosurg Psychiatry. 2005;76:1544–9.

    Article  PubMed  CAS  Google Scholar 

  78. Lizarraga KJ, Alexandre LC, Ramos-Estebanez C, Merenda A. Are steroids a beneficial adjunctive therapy in the immunosuppressed patient with herpes simplex virus encephalitis? Case Rep Neurol. 2013;5:52–5.

    Article  PubMed  Google Scholar 

  79. • Martinez-Torres F, Menon S, Pritsch M, Victor N, Jenetzky E, Jensen K, et al. German trial of Acyclovir and corticosteroids in Herpes-simplex-virus-encephalitis (GACHE): a multicenter, multinational, randomized, double-blind, placebo-controlled German, Austrian and Dutch trial. BMC Neurol. 2008;8:40. Initial description of the GACHE trial; still awaiting results.

    Article  PubMed  Google Scholar 

  80. VanLandingham KE, Marsteller HB. Relapse of herpes simplex encephalitis after conventional acyclovir therapy. JAMA. 1988;259:1051–3.

    Article  PubMed  CAS  Google Scholar 

  81. Ito Y, Kimura H, Yabuta Y, Ando Y. Exacerbation of herpes simplex encephalitis after successful treatment with acyclovir. Clin Infect Dis. 2000;30:185–7.

    Article  PubMed  CAS  Google Scholar 

  82. Kimura H, Aso K, Kuzushima K, Hanada N. Relapse of herpes simplex encephalitis in children. Pediatrics. 1992;89:891–4.

    PubMed  CAS  Google Scholar 

  83. Sköldenberg B, Aurelius E, Hjalmarsson A, Sabri F. Incidence and pathogenesis of clinical relapse after herpes simplex encephalitis in adults. J Neurol. 2006;253:163–70.

    Article  PubMed  Google Scholar 

  84. Barthez-Carpentier MA, Rozenberg F. Relapse of herpes simplex encephalitis. J Child Neurol. 1995;10:363–8.

    Article  PubMed  CAS  Google Scholar 

  85. Gable MS, Sheriff H, Dalmau J. The frequency of autoimmune N-methyl-D-aspartate receptor encephalitis surpasses that of individual viral etiologies in young individuals enrolled in the California. Clin Infect Dis. 2012;54:899–904.

    Article  PubMed  CAS  Google Scholar 

  86. Armangue T, Titulaer MJ, Málaga I, Bataller L. Pediatric anti-N-methyl-D-aspartate receptor encephalitis—clinical analysis and novel findings in a series of 20 patients. J Pediatr. 2013;162:850–6.

    Article  PubMed  CAS  Google Scholar 

  87. Berger JR, Houff S. Neurological complications of herpes simplex virus type 2 infection. Arch Neurol. 2008;65:596–600.

    Article  PubMed  Google Scholar 

  88. Logan SAE, MacMahon E. Viral meningitis. BMJ. 2008;336:36–40.

    Article  PubMed  Google Scholar 

  89. Thompson C, Whitley R. Neonatal herpes simplex virus infections: where are we now? Adv Exp Med Biol. 2011;697:221–30.

    Article  PubMed  Google Scholar 

  90. James SH, Kimberlin DW, Whitley RJ. Antiviral therapy for herpesvirus central nervous system infections: Neonatal herpes simplex virus infection, herpes simplex encephalitis, and congenital cytomegalovirus infection. Antiviral Res. 2009;83:207–13.

    Article  PubMed  CAS  Google Scholar 

  91. Whitley R. Neonatal herpes simplex virus infection. Curr Opin Infect Dis. 2004;17:243–6.

    Article  PubMed  Google Scholar 

  92. Stanberry LR, Spruance SL, Cunningham AL, Bernstein DI, Mindel A, Sacks S, et al. Glycoprotein-D-adjuvant vaccine to prevent genital herpes. N Engl J Med. 2002;347:1652–61.

    Article  PubMed  CAS  Google Scholar 

  93. Belshe RB, Leone PA, Bernstein DI. Efficacy results of a trial of a herpes simplex vaccine. N Engl J Med. 2012;366:34–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Felix Benninger received the Beilinson Hospital Young Investigators Grant in 2012.

Compliance with Ethics Guidelines

Conflict of Interest

Israel Steiner serves on the editorial board of the Journal of Neurological Sciences, Journal of Neurovirology, and Medicine Neurology (Hebrew). He is a consultant and member of DSMB for Actelion and Genentech/Roche. He has received honoraria from Teva Pharmaceutical Industries Ltd. He has also received travel/accommodations expenses covered or reimbursed from Beilinson Hospital, Petach Tikva, Israel.

Felix Benninger declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Israel Steiner.

Additional information

This article is part of the Topical Collection on Infection

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steiner, I., Benninger, F. Update on Herpes Virus Infections of the Nervous System. Curr Neurol Neurosci Rep 13, 414 (2013). https://doi.org/10.1007/s11910-013-0414-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-013-0414-8

Keywords

Navigation