Skip to main content
Log in

Nonatherosclerotic Causes of Acute Coronary Syndrome: Recognition and Management

  • Management of Acute Coronary Syndromes (R Gulati, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Acute coronary syndromes (ACS) frequently result from the rupture or erosion of a vulnerable coronary plaque, with associated intracoronary thrombosis. ACS also may occur in patients with angiographically normal coronary arteries. Some of these patients, however, still have angiographically silent underlying coronary artery disease. In this setting, subtle atherosclerotic changes frequently associated with unstable morphologic features or residual intracoronary thrombus may be detected with intracoronary imaging techniques. Nevertheless, other patients develop ACS as a result of nonatherosclerotic coronary artery disease (NA-CAD). ACS in patients with NA-CAD may be the consequence of coronary spasm or transient coronary embolic phenomena. In these patients, after the initial ischemic insult, late coronary angiography usually reveals normal epicardial coronary vessels. Kounis syndrome is a type of ACS generated by allergic reactions. Takotsubo cardiomyopathy is characterized by normal coronary arteries with a distinct pattern of transient left ventricular wall motion abnormalities. ACS also may occur in young patients following illicit drug use. Finally, spontaneous coronary artery dissection and intramural hematoma represent other etiologies of NA-CAD. In this review, we discuss current evidence regarding diagnostic and treatment strategies in patients presenting with ACS as a result of NA-CAD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Maddox TM, Ho PM, Roe M, et al. Utilization of secondary prevention therapies in patients with nonobstructive coronary artery disease identified during cardiac catheterization. Circ Cardiovasc Qual Outcomes. 2010;3:632–41.

    PubMed  Google Scholar 

  2. Berger JS, Elliot L, Gallup D, et al. Sex differences in mortality following acute coronary syndromes. JAMA. 2009;302:874–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Hochman JS, Tamis JE, Thompson TD, et al. Sex, clinical presentation and outcome in patients with acute coronary syndromes. N Engl J Med. 1999;341:226–32.

    CAS  PubMed  Google Scholar 

  4. Gehrie ER, Reynolds HR, Chen AY, et al. Characterization and outcomes of women and men with non-ST-segment elevation myocardial infarction and nonobstructive coronary artery disease: results of the CRUSADE quality improvement initiative. Am Heart J. 2009;158:688–94.

    PubMed  Google Scholar 

  5. Chokshi NP, Iqbal SN, Berger RL, et al. Sex and race are associated with the absence of epicardial coronary artery obstructive disease at angiography in patients with acute coronary syndromes. Clin Cardiol. 2010;33:495–501.

    PubMed  PubMed Central  Google Scholar 

  6. Amman P, Marschall S, Kraus M, et al. Characteristics and prognosis of myocardial infarction in patients with normal coronary arteries. Chest. 2000;117:333–8.

    Google Scholar 

  7. Mazurkiewicz L, Bilinska ZT, Kruk M, et al. Baseline clinical characteristics and midterm prognosis of STE-ACS and NSTE-ACS patients with normal coronary arteries. Ann Noninvasive Electrocardiol. 2009;14:4–12.

    PubMed  PubMed Central  Google Scholar 

  8. Reynols HR, Srichai MB, Iqbal SN, et al. Mechanisms of myocardial infarction in women without angiographically obstructive coronary artery disease. Circulation. 2011;124:1414–25. This prospective study evaluated IVUS and CMR findings in women with acute myocardial infarction and nonobstructive CAD.

    Google Scholar 

  9. Lanza GA, Sestito A, Sgueglia GA, et al. Current clinical features, diagnostic assessment and prognostic determinants of patients with variant angina. Int J Cardiol. 2007;118:41–7.

    PubMed  Google Scholar 

  10. Takagi Y, Takahashi J, Yasuda S, et al. Prognostic stratification of patients with vasospastic angina. J Am Coll Cardiol. 2013;62:1144–53. The authors present a novel scoring system for the comprehensive risk assessment and prognostic stratification of patients with CV.

    PubMed  Google Scholar 

  11. Manzano MC, Vilacosta I, San Roman JA, et al. Acute coronary syndrome in infective endocarditis. Rev Esp Cardiol. 2007;60:24–31.

    PubMed  Google Scholar 

  12. Azzarelli S, Galassi AR, Amico F, et al. Clinical features of transient left ventricular apical ballooning. Am J Cardiol. 2006;98:1273–6.

    PubMed  Google Scholar 

  13. Parodi G, Del Pace S, Carrabba N, et al. Incidence, clinical findings, and outcome of women with left ventricular apical ballooning syndrome. Am J Cardiol. 2007;99:182–5.

    PubMed  Google Scholar 

  14. Sy F, Basraon J, Zheng H, et al. Frequency of Takotsubo cardiomyopathy in postmenopausal women presenting with an acute coronary syndrome. Am J Cardiol. 2013;112:479–82.

    PubMed  Google Scholar 

  15. Sharkey SW, Windenburg DC, Lesser JR, et al. Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll Cardiol. 2010;55:333–41.

    PubMed  Google Scholar 

  16. Elesber AA, Prasad A, Lennon RJ, et al. Four-year recurrence rate and prognosis of the apical ballooning syndrome. J Am Coll Cardiol. 2007;50:448–52.

    PubMed  Google Scholar 

  17. Feldman JA, Fish SS, Beshnsky JR, et al. Acute cardiac ischemia in patients with cocaine-associated complaints: results of a multicenter trial. Ann Emerg Med. 2000;36:469–76.

    CAS  PubMed  Google Scholar 

  18. Hollander JE, Hoffman RS, Gennis P, et al. Cocaine Associated Chest Pain (COCHPA) Study Group. Prospective multicenter evaluation of cocaine-associated chest pain. Acad Emerg Med. 1994;1:330–9.

    CAS  PubMed  Google Scholar 

  19. Alfonso F, Paulo M, Lennie V, et al. Spontaneous coronary artery dissection. Long term follow-up of a large series of patients prospectively managed with a “conservative” therapeutic strategy. J Am Coll Cardiol Intv. 2012;5:1062–70. In this large prospective series of patients with SCAD, a conservative therapeutic strategy provided an excellent long-term prognosis.

    Google Scholar 

  20. Vanzetto G, Berger-Coz E, Barone-Rochette G, Chavanon O, Bouvaist H, Hacini R, et al. Prevalence, therapeutic management and medium-term prognosis of spontaneous coronary artery dissection: results from a database of 11,605 patients. Eur J Cardiothorac Surg. 2009;35:250–4.

    PubMed  Google Scholar 

  21. Tweet M, Hayes S, Pitta S, et al. Clinical features, management and prognosis of spontaneous coronary artery dissection. Circulation. 2012;126:579–88. This is the largest series with long follow-up in patients with SCAD.

    PubMed  Google Scholar 

  22. Hill SF, Sheppard MN. Non-atherosclerotic coronary artery disease associated with sudden cardiac death. Heart. 2010;96:1119–25.

    PubMed  Google Scholar 

  23. Dey S, Flather MD, Devlin G, et al. Sex-related differences in the presentation, treatment and outcomes among patients with acute coronary syndromes: the Global Registry of Acute Coronary Events. Heart. 2009;95:20–6.

    CAS  PubMed  Google Scholar 

  24. Roe MT, Harrington RA, Prosper DM, et al. Clinical and therapeutic profile of patients presenting with acute coronary syndromes who do not have significant coronary artery disease. The Platelet Glycoprotein IIb/IIIa in Unstable Angina: Receptor Suppression Using Integrilin Therapy (PURSUIT) Trial Investigators. Circulation. 2000;102:1101–6.

    CAS  PubMed  Google Scholar 

  25. Alfredsson J, Lindback J, Wallentin L, et al. Similar outcome with an invasive strategy in men and women with non-ST elevation acute coronary syndromes: from Swedish Web-System for Enhancement and Development of Evidence-Based Care in Heart Disease Evaluated According to Recommended Therapies (SWEDEHEART). Eur Heart J. 2011;32:3128–36.

    PubMed  Google Scholar 

  26. Prinzmetal M, Kennamer R, Merliss R, et al. Angina pectoris I: a variant form of angina pectoris; preliminary report. Am J Med. 1959;27:375–88.

    CAS  PubMed  Google Scholar 

  27. Yasue H, Kugiyama K. Coronary spasm: clinical features and pathogenesis. Intern Med. 1997;36:760–5.

    CAS  PubMed  Google Scholar 

  28. Yasue H, Nakagawa H, Itoh T, et al. Coronary artery spasm—clinical features, diagnosis, pathogenesis, and treatment. J Cardiol. 2008;51:2–17.

    PubMed  Google Scholar 

  29. Kusama Y, Kodani E, Nakagomi A, et al. Variant angina and coronary artery spasm: the clinical spectrum, pathophysiology and management. J Nippon Med Sch. 2011;78:4–12.

    PubMed  Google Scholar 

  30. Bastante-Valiente T, Gonzalez-Mansilla A, Parra-Fuertes JJ, et al. Sequential coronary spasm in Prinzmetal’s angina presenting as syncope. Rev Esp Cardiol. 2008;61:332–3.

    PubMed  Google Scholar 

  31. Kishida H, Tada Y, Fukuma N, et al. Significant characteristics of variant angina patients with associated syncope. Jpn Heart J. 1996;37:317–26.

    CAS  PubMed  Google Scholar 

  32. Romagnoli E, Lanza GA. Acute myocardial infarction with normal coronary arteries: role of coronary artery spasm and arrhythmic complications. Int J Cardiol. 2007;117:3–5.

    PubMed  Google Scholar 

  33. Onaka H, Hirota Y, Shimada S, et al. Clinical observation of spontaneous angina attacks and multivessel spasm in variant angina pectoris with normal coronary arteries: evaluation by 24-hour 12-lead electrocardiography with computer analysis. J Am Coll Cardiol. 1996;27:38–44.

    CAS  PubMed  Google Scholar 

  34. Okumura K, Yasue H, Horio Y, et al. Multivessel coronary spasm in patients with variant angina: a study with intracoronary injection of acetylcholine. Circulation. 1988;77:535–42.

    CAS  PubMed  Google Scholar 

  35. Onaka H, Hirota Y, Shimada S, et al. Prognostic significance of the pattern of multivessel spasm in patients with variant angina. Jpn Circ J. 1999;63:509–13.

    CAS  PubMed  Google Scholar 

  36. Akasaka T, Okumura K, Kawashima S, et al. Guidelines for the diagnosis and treatment of patients with vasospastic angina (coronary spastic angina) (JCS 2008). Circ J. 2008;72:1239–52.

    Google Scholar 

  37. Zaya M, Mehta PK, Merz BM. Provocative testing for coronary reactivity and spasm. J Am Coll Cardiol. 2014;63:103–8. This review of provocative testing for the diagnosis of CV summarizes various dosing protocols.

    PubMed  Google Scholar 

  38. Hackett D, Larkin S, Chierchia S, et al. Induction of coronary artery spasm by a direct local action of ergonovine. Circulation. 1987;75:577–82.

    CAS  PubMed  Google Scholar 

  39. Ong P, Athanasiadis A, Borgulya G, et al. Clinical usefulness, angiographic characteristics and safety evaluation of intracoronary acetylcholine provocation testing among 921 consecutive Caucasian patients with unobstructed coronary arteries. Circulation. 2014;129:1723–30.

    CAS  PubMed  Google Scholar 

  40. Morikawa Y, Uemura S, Ishigami K, et al. Morphological features of coronary arteries in patients with coronary spastic angina: assessment with intracoronary optical coherence tomography. Int J Cardiol. 2011;146:334–40.

    PubMed  Google Scholar 

  41. Tanaka A, Shimada K, Tearney GJ, et al. Conformational change in coronary artery structure assessed by optical coherence tomography in patients with vasospastic angina. J Am Coll Cardiol. 2011;58:1608–13.

    PubMed  PubMed Central  Google Scholar 

  42. Park HC, Choi SI, Lee JU, et al. Morphological findings in typical variant angina presenting as acute coronary syndrome using optical coherence tomography. J Interv Cardiol. 2013;26:491–500.

    PubMed  Google Scholar 

  43. Morikawa Y, Mizuno Y, Harada E, et al. Aerobic interval exercise training in the afternoon reduces attacks of coronary spastic angina in conjunction with improvement in endothelial function, oxidative stress, and inflammation. Coron Artery Dis. 2013;24:177–82.

    PubMed  Google Scholar 

  44. Nishigaki K, Inoue Y, Yamanouchi Y, et al. Prognostic effects of calcium channel blockers in patients with vasospastic angina—a meta analysis. Circ J. 2010;74:1943–50.

    PubMed  Google Scholar 

  45. Kounis NG, Zavras GM. Histamine-induced coronary artery spasm: the concept of allergic angina. Br J Clin Pract. 1991;45:121–8.

    CAS  PubMed  Google Scholar 

  46. Kounis NG. Coronary hypersensitivity disorder: the Kounis syndrome. Clin Ther. 2013;35:563–71. This recent review of KS was written by the author who first described the association between ACS and allergic reactions.

    PubMed  Google Scholar 

  47. Kounis NG, Mazarakis A, Tsigkas G, et al. Kounis syndrome: a new twist on an old disease. Futur Cardiol. 2011;7:805–24.

    Google Scholar 

  48. Chen JP, Hou D, Pendyala L, et al. Drug-eluting stent thrombosis: the Kounis hypersensitivity-associated acute coronary syndrome revisited. JACC Cardiovasc Interv. 2009;2:583–93.

    PubMed  Google Scholar 

  49. Rico-Cepeda P, Palencia-Herrejon E, Rodriguez Aguirregabiria MM. Kounis syndrome. Med Intensiv. 2012;36:358–64.

    CAS  Google Scholar 

  50. Cevik C, Nugent K, Shome GP, et al. Treatment of Kounis syndrome. Int J Cardiol. 2010;143:223–6.

    PubMed  Google Scholar 

  51. Tang L, Hu XQ, Zhou SH. Coronary artery embolism causing acute myocardial infarction in patients with mechanical heart valve prosthesis: which is the optimal treatment? Heart Lung Circ. 2013;23(5):422–7.

    PubMed  Google Scholar 

  52. López-Lluva MT, Sánchez-Pérez I, Fernández-Vallejo V, et al. Non-atherosclerotic acute myocardial infarction: coronary artery embolism. Med Intensiv. 2013;31:209–11.

    Google Scholar 

  53. Czarina JR, Weekes AJ. Acute myocardial infarction caused by coronary embolism from infective endocarditis. J Emerg Med. 2011;40:509–14.

    Google Scholar 

  54. Bathina JD, Daher IN, Plana JC, et al. Acute myocardial infarction associated with nonbacterial thrombotic endocarditis. Tex Heart Inst J. 2010;37:208–12.

    PubMed  PubMed Central  Google Scholar 

  55. Angulo-Llanos R, Sanz-Ruiz R, Solis J, et al. Acute myocardial infarction: an uncommon complication of takotsubo cardiomyopathy. Catheter Cardiovasc Interv. 2013;82:909–13.

    CAS  PubMed  Google Scholar 

  56. Han DC, Kim JS, Lee SK, et al. Native aortic valve thrombosis: an unusual cause of acute ST-elevation myocardial infarction. Cardiovasc Pathol. 2013;22:e23–6.

    PubMed  Google Scholar 

  57. Hisatomi K, Yamada T, Odate T, et al. Intermittent coronary artery occlusion caused by a floating thrombus in the left coronary sinus of Valsalva of a patient with a normal aorta and protein C deficiency. Ann Thorac Surg. 2011;92:1508–10.

    PubMed  Google Scholar 

  58. Ferreira AR, Freitas A, Magno P, et al. Acute coronary syndrome of paradoxical origin. Rev Port Cardiol. 2013;32:817–21.

    PubMed  Google Scholar 

  59. Myers PO, Bounameaux H, Panos A, et al. Impending paradoxical embolism. Chest. 2010;137:164–70.

    PubMed  Google Scholar 

  60. Brito JD, Almeida MS, Ribeiras R, et al. Recurrent myocardial infarction in a patient with papillary fibroelastoma. Arq Bras Cardiol. 2012;98:e7–10.

    PubMed  Google Scholar 

  61. Konstanty-Kalndyk J, Wierzbicki K, Bartus K, et al. Acute myocardial infarction due to coronary embolisation as the first manifestation of left atrial myxoma. Kardiol Pol. 2013;71:403–5.

    Google Scholar 

  62. Protasiewick M, Rojek A, Gajek J, et al. Cardiac arrest due to left circumflex coronary artery embolism as a complication of subtherapeutic oral anticoagulation in a patient with mitral and aortic mechanical valve prostheses. Postep Kardiol Int. 2013;9:97–100.

    Google Scholar 

  63. Sato HTH, Tateishi H, Uchido T, et al. Takotsubo type cardiomyopathy due to multivessel spasm. In: Kodama K, Haze K, Hon M, editors. Clinical aspect of myocardial injury: from ischemia to heart failure (in Japanese). Tokyo: Kagakuhyouronsya Co.; 1990. p. 56–64.

    Google Scholar 

  64. Desmet WJ, Adriaenssens BF, Dens JA. Apical ballooning of the left ventricle: first series in white patients. Heart. 2003;89:1027–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Schneider B, Athanasiadis A, Stölberger C, et al. Gender differences in the manifestation of tako-tsubo cardiomyopathy. Int J Cardiol. 2013;166:584–8.

    PubMed  Google Scholar 

  66. Prasad A, Lerman A, Rihal CS. Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J. 2008;155:408–17.

    PubMed  Google Scholar 

  67. Ghadri JR, Ruschitzka F, Lüscher TF, Templin C. Takotsubo cardiomyopathy: still much more to learn. Heart. 2014. doi:10.1136/heartjnl-2013-304691. The authors present an up-to-date review on TTC.

  68. Nguyen TH, Neil CJ, Sverdlov AL, et al. N-terminal pro-brain natriuretic protein levels in takotsubo cardiomyopathy. Am J Cardiol. 2011;108:1316–21.

    CAS  PubMed  Google Scholar 

  69. Lozano A, Bastante T, Salamanca J, et al. Tako-Tsubo cardiomyopathy triggered by influenza A virus infection. Int J Cardiol. 2014. doi:10.1016/j.ijcard.2014.04.033.

  70. Alfonso F, Núñez-Gil IJ, Hernández R. Optical coherence tomography findings in Tako-Tsubo cardiomyopathy. Circulation. 2012;126:1663–4.

    PubMed  Google Scholar 

  71. Alfonso F, Cárdenas A, Ibáñez B, et al. Mid-ventricular tako-tsubo cardiomyopathy with structurally normal coronary arteries confirmed by optical coherence tomography. J Invasive Cardiol. 2013;25:e214–5.

    PubMed  Google Scholar 

  72. Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, et al. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA. 2011;306:277–86. In this prospective multicenter registry of patients with TTC, CMR was used systematically at initial presentation and follow-up.

    CAS  PubMed  Google Scholar 

  73. Santoro F, Ieva R, Ferraretti A, et al. Safety and feasibility of levosimendan administration in takotsubo cardiomyopathy: a case series. Cardiovas Ther. 2013;31:e133–7.

    CAS  Google Scholar 

  74. Santoro F, Ieva R, Musaico F, et al. Lack of efficacy of drug therapy in preventing takotsubo cardiomyopathy recurrence: a meta-analysis. Clin Cardiol. 2014;37(7):434–9.

    PubMed  PubMed Central  Google Scholar 

  75. US Department of Health and Human Services (DHS); Office of Applied Studies. Results from the 2008 National Survey on Drugs Use and Health: national findings. http://oas.samshsa.gov/nsduh/2k8nsduh/2k8Results.cfm.

  76. US Department of Health and Human Services (DHS), Substance Abuse and Mental Health Service Administration, Office of Applied Studies. Drug Abuse Warning Network, 2007: national estimates of drug-related emergency department visits. Rockville, MD: 2010. https://dawninfo.smhsa.gov/files/ED2007/DAWN2k7ED.pdf

  77. Burillo-Putze G, Borreguero León JM, García Dopico JA, et al. Incidence and impact of undisclosed cocaine use in emergency department chest pain and trauma patients. Int J Emerg Med. 2008;1:169–72.

    PubMed  PubMed Central  Google Scholar 

  78. Brogan III WC, Lange RA, Kim AS, et al. Alleviation of cocaine-induced coronary vasoconstriction by nitroglycerin. J Am Coll Cardiol. 1991;18:581–6.

    PubMed  Google Scholar 

  79. Moliterno DJ, Willard JE, Lange RA, et al. Coronary-artery vasoconstriction induced by cocaine, cigarette smoking, or both. N Engl J Med. 1994;330:454–9.

    CAS  PubMed  Google Scholar 

  80. Dressler FA, Malekzadeh S, Roberts WC. Quantitative analysis of amounts of coronary arterial narrowing in cocaine addicts. Am J Cardiol. 1990;65:303–8.

    CAS  PubMed  Google Scholar 

  81. Finkel JB, Marhefka GD. Rethinking cocaine-associated chest pain and acute coronary syndromes. Mayo Clin Proc. 2011;86:1198–207. This review focuses on the relationship between cocaine abuse and ACS.

    PubMed  PubMed Central  Google Scholar 

  82. Hollander JE, Levitt MA, Young GP, et al. Effect of recent cocaine use on the specificity of cardiac markers for diagnosis of acute myocardial infarction. Am Heart J. 1998;135:245–52.

    CAS  PubMed  Google Scholar 

  83. McCord J, Jneid H, Hollander JE, et al. Management of cocaine-associated chest pain and myocardial infarction: a scientific statement from the American Heart Association Acute Cardiac Care Committee of the Council on Clinical Cardiology. Circulation. 2008;117:1897–907.

    PubMed  Google Scholar 

  84. Dattilo PB, Hailperm SM, Fearon K, et al. Beta-blockers are associated with reduced risk of myocardial infarction after cocaine use. Ann Emerg Med. 2008;51:117–25.

    PubMed  Google Scholar 

  85. Rangel C, Shu RG, Lazar LD, et al. Beta-blockers for chest pain associated with recent cocaine use. Arch Intern Med. 2010;170:874–9.

    PubMed  Google Scholar 

  86. Hoskins MH, Leleiko RM, Ramos JJ, et al. Effects of labetalol on hemodynamic parameters and soluble biomarkers of inflammation in acute coronary syndrome in patients with active cocaine use. J Cardiovasc Pharmacol Ther. 2010;15:47–52.

    CAS  PubMed  Google Scholar 

  87. Pretty H. Dissecting aneurysms of coronary artery in woman aged 42: rupture. BMJ. 1931;1:667.

    Google Scholar 

  88. Alfonso F. Spontaneous coronary artery dissection. New insights from the tip of the iceberg? Circulation. 2012;126:667–70.

    PubMed  Google Scholar 

  89. Saw J, Ricci D, Starovoytov A, et al. Spontaneous coronary artery dissection. Prevalence and predisposing conditions including fibromuscular dysplasia in a tertiary center cohort. J Am Coll Cardiol Intv. 2013;6:44–52. Patients with SCAD were prospectively and retrospectively screened for fibromuscular dysplasia. The results show a high prevalence of concomitant fibromuscular dysplasia in these patients.

    Google Scholar 

  90. Vrints C. Spontaneous coronary artery dissection. Heart. 2010;96:801–8.

    PubMed  Google Scholar 

  91. Alfonso F, Paulo M, Gonzalo N, et al. Diagnosis of spontaneous coronary artery dissection by optical coherence tomography. J Am Coll Cardiol. 2012;59:1073–9.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Amparo Benedicto, Teresa Bastante, Jorge Restrepo, Javier Cuesta, Fernando Rivero, and Fernando Alfonso have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Alfonso.

Additional information

This article is part of the Topical Collection on Management of Acute Coronary Syndromes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastante, T., Rivero, F., Cuesta, J. et al. Nonatherosclerotic Causes of Acute Coronary Syndrome: Recognition and Management. Curr Cardiol Rep 16, 543 (2014). https://doi.org/10.1007/s11886-014-0543-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-014-0543-y

Keywords

Navigation