Skip to main content
Log in

The use of solid-oxide-membrane technology for electrometallurgy

  • Overview
  • Fundamentals of Electrochemical Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Solid oxide membrane (SOM) technology has been employed in developing several new metal reduction technologies. This overview describes the SOM process for copper deoxidation and SOM technology for metal smelting, as well as applications to magnesium, titanium, and tantalum. The examples illustrate various configurations of the SOM, anode, and cathode that are best suited to the needs of each metal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Soral and U.B. Pal, “A Pilot Scale Trial of Improved Galvanic Deoxidation Process for Refining Molten Copper,” Metall. Mater. Trans., 30B(2) (1999), p. 307.

    CAS  Google Scholar 

  2. U.B. Pal, D.E. Woolley, and G.B. Kenney, “Emerging SOM Technology for the Green Synthesis of Metals from Oxides,” JOM, 53(10) (2001), p. 32.

    CAS  Google Scholar 

  3. A. Krishnan, X.G. Lu, and U.B. Pal, “Solid Oxide Membrane Process for Magnesium Production Directly from Magnesium Oxide,” Metall. Mater. Trans., 36B (2005), p. 463.

    CAS  Google Scholar 

  4. A. Krishnan, X.G. Lu, and U.B. Pal, “Solid Oxide Membrane (SOM) Technology for Environmentally Sound Production of Tantalum Metal and Alloys from their Oxide Sources,” Scand. J. Metall., 34(5) (2005), p. 293.

    Article  CAS  Google Scholar 

  5. R. DeLucas et al., “Cost-Effective Magnesium Oxide Recycling for Economic Viability of Magnesium Hydride Slurry Technology for Hydrogen Storage,” Proceedings of the Sohn International Symposium Adv. Proc. of Metals and Materials, Vol. 7, Industrial Practice, New, Improved and Existing Technologies: Non-Ferrous Materials Extraction and Processing, ed. F. Kongoli and R.G. Reddy (Warrendale, PA: TMS, 2006), p. 561.

    Google Scholar 

  6. A. Krishnan, “Solid Oxide Membrane Process for the Direct Reduction of Magnesium from Magnesium Oxide” (Ph.D. Thesis, Boston University, 2005).

  7. M. Suput et al., “Solid Oxide Membrane Technology for Environmentally Sound Production of Titanium,” Proceedings of the Sohn International Symposium Adv. Proc. of Metals and Materials, Vol. 4, New, Improved and Existing Technologies: Non-Ferrous Materials Extraction and Processing, ed. F. Kongoli and R.G. Reddy (Warrendale, PA: TMS, 2006), p. 273.

    Google Scholar 

  8. Rachel DeLucas et al, “Modelling of Magnesium Extraction from Magnesium Oxide by the Solid Oxide Membrane (SOM) Process,” Proceedings of the Sohn International Symposium Adv. Proc. of Metals and Materials, Vol. 4, New, Improved and Existing Technologies: Non-Ferrous Materials Extraction and Processing, ed. F. Kongoli and R.G. Reddy (Warrendale, PA: TMS, 2006), p. 285.

    Google Scholar 

  9. W. Kroll, Tr. Electrochem. Soc., 78 (1940), p. 35.

    Google Scholar 

  10. http://minerals.usgs.gov/minerals/pubs/commodity/titanmyb02.pdf (accessed on 4/20/06).

  11. A.C. Powell, W. Pongsaksawad, and U.B. Pal, “Phase Field Modeling of Phase Boundary Shape and Topology Changes Due to Electrochemical Reactions in Solid and Liquid Systems,” Proceedings of the Sohn International Symposium Adv. Proc. of Metals and Materials, Vol. 3: Thermo and Physicochemical Principles: Special Materials; Aqueous and Electrochemical Processing, ed. F. Kongoli and R.G. Reddy (Warrendale, PA: TMS, 2006), p. 623.

    Google Scholar 

  12. The Economics of Tantalum (London: Roskill Information Systems Ltd., 2002).

  13. D.K. Bose and C.K. Gupta, Mineral Processing and Extractive Metallurgy Review, 22 (2001), pp. 389–412.

    CAS  Google Scholar 

  14. L.D. Cunningham, Tantalum Mineral Commodity Summaries (Washington, D.C.: U.S. Geological Survey, 2004).

    Google Scholar 

  15. G.L. Miller, Tantalum and Niobium (London, Butterworth Scientific Publications, 1959).

    Google Scholar 

  16. K.D. Moser, JOM, 51(4) (1999), pp. 29–31.

    CAS  Google Scholar 

  17. G.Z. Chen, D.J. Fray, and T.W. Farthing, Nature, 407 (2000), p. 361.

    Article  ADS  CAS  Google Scholar 

  18. X.Y. Yan and D.J. Fray, Metall. Mater. Trans., 33B (2002), p. 685.

    CAS  Google Scholar 

  19. G.Z. Chen, E. Gordo, and D.J. Fray, Metall. Mater. Trans., 35B (2004), p. 223.

    CAS  Google Scholar 

  20. U.B. Pal, A. Krishnan, and C.P. Manning, Proceedings of the Yazawa International Symposium on Metallurgical and Materials Processing, ed. F. Kongoli et al. (Warrendale, PA: TMS, 2003), p. 351.

    Google Scholar 

  21. U.B. Pal et al., EPD Congress 2004, ed. Mark Schlesinger (Warrendale, PA: TMS, 2004), p. 57.

    Google Scholar 

  22. K.E. Oberg, W.M. Boorstein, and R.A. Rapp, Metall. Mater. Trans., 4 (1973), p. 75.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pal, U.B., Powell, A.C. The use of solid-oxide-membrane technology for electrometallurgy. JOM 59, 44–49 (2007). https://doi.org/10.1007/s11837-007-0064-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-007-0064-x

Keywords

Navigation