Skip to main content

Advertisement

Log in

Reproductive Trade-Offs and Direct Costs for Males in Arthropods

  • Synthesis Paper
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Until 30 years ago, the emphasis on reproductive costs for males was mainly on costs related to mate searching, courtship and fighting with rival males. However, costs for males are substantial and varied and often resemble the more thoroughly studied female reproductive costs. Costs can be referred to as trade-off costs, where investment in reproductive activity comes at the expense of another important activity or fitness component. Investment in reproduction at the expense of longevity and future reproduction is the ultimate cost, because it affects fitness directly. In contrast, flawed performance (e.g., of the immune system) is perceived as a mechanistic trade-off, because it affects fitness indirectly through a mediator (i.e., parasites). Finally, direct costs refer to direct measurements of the energy expenditure during involvement in reproduction-related activities. Both direct and mechanistic trade-off costs often result in decreased longevity compared to unmated males (an ultimate cost). Males incur costs during different reproductive phases: before copulation, when producing sperm, while searching for, courting and copulating with females, and subsequently when guarding females or taking care of offspring. This synthesis follows previous pioneering reviews addressing specific aspects of male costs, but strives to summarize all known male reproductive cost types more comprehensively, including their classification. We suggest several directions for targeted future research. While costs for males have been fairly well described, it is now necessary to uncover the ecological and evolutionary factors responsible for differences between closely related species and systems and to better link between directly-measured costs, mechanistic trade-off costs and ultimate trade-off costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abrahams, M. V. (1993). The trade-off between foraging and courting in male guppies. Animal Behaviour, 45, 673–681.

    Article  Google Scholar 

  • Acharya, L., & McNeil, J. N. (1998). Predation risk and mating behavior: The responses of moths to bat-like ultrasound. Behavioral Ecology, 9, 552–558.

    Article  Google Scholar 

  • Adamo, S. A. (2004). How should behavioural ecologists interpret measurements of immunity? Animal Behaviour, 68, 1443–1449.

    Article  Google Scholar 

  • Ahtiainen, J. J., Alatalo, R. V., Kortet, R., & Rantala, M. J. (2005). A trade-off between sexual signaling and immune function in a natural population of the drumming wolf spider Hygrolycosa rubrofasciata. Journal of Evolutionary Biology, 18, 985–991.

    Article  PubMed  CAS  Google Scholar 

  • Alcock, J. (1994). Postinsemination associations between males and females in insects: The mate-guarding hypothesis. Annual Review of Entomology, 39, 1–21.

    Article  Google Scholar 

  • Alonzo, S. H., & Warner, R. R. (1999). A trade-off generated by sexual conflict: Mediterranean wrasse males refuse present mates to increase future success. Behavioral Ecology, 10, 105–111.

    Article  Google Scholar 

  • Andrade, M. C. B. (2003). Risky mate search and male self-sacrifice in redback spiders. Behavioral Ecology, 14, 531–538.

    Article  Google Scholar 

  • Bailey, W. J., & Haythornthwaite, S. (1998). Risks of calling by the field cricket Teleogryllus oceanicus; potential predation by Australian long-eared bats. Journal of Zoology, 244, 505–513.

    Article  Google Scholar 

  • Bailey, W. J., & Nuhardiyati, M. (2005). Copulation, the dynamics of sperm transfer and female refractoriness in the leafhopper Balclutha incise (Hemiptera: Cicadellidae: Deltocephalinae). Physiological Entomology, 30, 343–352.

    Article  Google Scholar 

  • Belovsky, G. E., Slade, J. B., & Chase, J. M. (1996). Mating strategies based on foraging ability: An experiment with grasshoppers. Behavioral Ecology, 7, 438–444.

    Article  Google Scholar 

  • Benesh, D. P., Valtonen, E. T., & Jormalainen, V. (2007). Reduced survival associated with precopulatory mate guarding in male Asellus aquaticus (Isopoda). Annales Zoologici Fennici, 44, 425–434.

    Google Scholar 

  • Blanckenhorn, W. U., Hosken, D. J., Martin, O. Y., Reim, C., Teuschl, Y., & Ward, P. I. (2002). The costs of copulating in the dung fly Sepsis cynipsea. Behavioral Ecology, 13, 353–358.

    Article  Google Scholar 

  • Blanckenhorn, W. U., Preziosi, R. F., & Fairbairn, D. J. (1995). Time and energy constraints and the evolution of sexual size dimorphism—To eat or to mate? Evolutionary Ecology, 9, 369–381.

    Article  Google Scholar 

  • Blanckenhorn, W. U., & Viele, S. N. T. (1999). Foraging in yellow dung flies: Testing for a small-male time budget advantage. Ecological Entomology, 24, 1–6.

    Article  Google Scholar 

  • Bonduriansky, R. (2001). The evolution of male mate choice in insects: A synthesis of ideas and evidence. Biological Reviews, 76, 305–339.

    Article  PubMed  CAS  Google Scholar 

  • Bonduriansky, R., Maklakov, A., Zajitschek, F., & Brooks, R. (2008). Sexual selection, sexual conflict and the evolution of ageing and life span. Functional Ecology, 22, 443–453.

    Article  Google Scholar 

  • Brockmann, H. J. (2001). The evolution of alternative strategies and tactics. Advances in the Study of Behavior, 30, 1–51.

    Article  Google Scholar 

  • Brown, E. A., Gay, L., Vasudev, R., Tregenza, T., Eady, P. E., & Hosken, D. J. (2009). Negative phenotypic and genetic associations between copulation duration and longevity in male seed beetles. Heredity, 103, 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Brown, J. S., & Kotler, B. P. (2004). Hazardous duty pay and the foraging cost of predation. Ecology Letters, 7, 999–1014.

    Article  Google Scholar 

  • Burton-Chellew, M. N., Sykes, E. M., Patterson, S., Shuker, D. M., & West, S. A. (2007). The cost of mating and the relationship between body size and fitness in males of the parasitoid wasp Nasonia vitripennis. Evolutionary Ecology Research, 9, 921–934.

    Google Scholar 

  • Cardoso, M. Z., Roper, J. J., & Gilbert, L. E. (2009). Prenuptial agreements: Mating frequency predicts gift-giving in Heliconius species. Entomologia Experimentalis et Applicata, 131, 109–114.

    Article  Google Scholar 

  • Cerenius, L., Lee, B. L., & Söderhäll, K. (2008). The proPO-system: Pros and cons for its role in invertebrate immunity. Trends in Immunology, 29, 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Chapman, T., Arnqvist, G., Bangham, J., & Rowe, L. (2003). Sexual conflict. Trends in Ecology & Evolution, 18, 41–47.

    Article  Google Scholar 

  • Cordero, C. (2000). Trade-off between fitness components in males of the polygynous butterfly Callophrys xami (Lycaenidae): The effect of multiple mating on longevity. Behavioral Ecology and Sociobiology, 48, 458–462.

    Article  Google Scholar 

  • Cordts, R., & Partridge, L. (1996). Courtship reduces longevity of male Drosophila melanogaster. Animal Behaviour, 52, 269–278.

    Article  Google Scholar 

  • Damiens, D., & Boivin, G. (2005). Male reproductive strategy in Trichogramma evanescens: Sperm production and allocation to females. Physiological Entomology, 30, 241–247.

    Article  Google Scholar 

  • Davies, S., Kattel, R., Bhatia, B., Petherwick, A., & Chapman, T. (2005). The effect of diet, sex and mating status on longevity in Mediterranean fruit flies (Ceratitis capitata), Diptera: Tephritidae. Experimental Gerontology, 40, 784–792.

    Article  PubMed  Google Scholar 

  • Dawkins, R. (1976). The selfish gene. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Desouhant, E., Driessen, G., & Bernstein, A. C. (2005). Host and food searching in a parasitic wasp Venturia canescens: A trade-off between current and future reproduction. Animal Behaviour, 70, 145–152.

    Article  Google Scholar 

  • Dickinson, J. L. (1995). Trade-offs between postcopulatory riding and mate location in the blue milkweed beetle. Behavioral Ecology, 6, 280–286.

    Article  Google Scholar 

  • Dodson, G., & Marshall, L. (1984). Mating patterns in an ambush bug Phymata fasciata (Phymatidae). American Midland Naturalist, 112, 50–57.

    Article  Google Scholar 

  • Dowling, D. K., & Simmons, L. W. (2012). Ejaculate economics: Testing the effects of male sexual history on the trade-off between sperm and immune function in Australian crickets. PLoS ONE, 7, e30172.

    Article  PubMed  CAS  Google Scholar 

  • Dunn, A. M., Dick, J. T. A., & Hatcher, M. J. (2008). The less amorous Gammarus: Predation risk affects mating decisions in Gammarus duebeni (Amphipoda). Animal Behaviour, 76, 1289–1295.

    Article  Google Scholar 

  • Engqvist, L., & Sauer, K. P. (2002). A life-history perspective on strategic mating effort in male scorpionflies. Behavioral Ecology, 13, 632–636.

    Article  Google Scholar 

  • Engqvist, L., & Sauer, K. P. (2003). Influence of Nutrition on courtship and mating in the scorpionfly Panorpa cognata (Mecoptera, Insecta). Ethology, 109, 911–928.

    Article  Google Scholar 

  • Eshel, I., Volovik, I., & Sansone, E. (2000). On Fisher-Zahavi’s handicapped sexy son. Evolutionary Ecology Research, 2, 509–523.

    Google Scholar 

  • Fedorka, K. M., Zuk, M., & Mousseau, T. A. (2004). Immune suppression and the cost of reproduction in the ground cricket, Allonemobius socius. Evolution, 58, 2478–2485.

    PubMed  Google Scholar 

  • Ferkau, C., & Fischer, K. (2006). Costs of reproduction in male Bicyclus anynana and Pieris napi butterflies: Effects of mating history and food limitation. Ethology, 112, 1117–1127.

    Article  Google Scholar 

  • Fowler-Finn, K. D., & Hebets, E. A. (2011). More ornamented males exhibit increased predation risk and antipredatory escapes, but not greater mortality. Ethology, 117, 102–114.

    Article  Google Scholar 

  • Gaskett, A. C., Herberstein, M. E., Downes, B. J., & Elgar, M. A. (2004). Changes in male mate choice in a sexually cannibalistic orb-web spider (Araneae: Araneidae). Behaviour, 141, 1197–1210.

    Article  Google Scholar 

  • Gaskin, T., Futerman, P., & Chapman, T. (2002). Increased density and male–male interactions reduce male longevity in the medfly, Ceratitis capitata. Animal Behaviour, 63, 121–129.

    Article  Google Scholar 

  • Gershman, S. N. (2008). Sex-specific differences in immunological costs of multiple mating in Gryllus vocalis field crickets. Behavioral Ecology, 19, 810–815.

    Article  Google Scholar 

  • Gershman, S. N., Barnett, C. A., Pettinger, A. M., Weddle, C. B., Hunt, J., & Sakaluk, S. K. (2010). Give ‘til it hurts: Trade-offs between immunity and male reproductive effort in the decorated cricket, Gryllodes sigillatus. Journal of Evolutionary Biology, 23, 829–839.

    Article  PubMed  CAS  Google Scholar 

  • Grazer, V., & Martin, O. Y. (2012). Elevated temperature changes female costs and benefits of reproduction. Evolutionary Ecology, 26, 625–637.

    Article  Google Scholar 

  • Griffiths, S. W. (1996). Sex differences in the trade-off between feeding and mating in the guppy. Journal of Fish Biology, 48, 891–898.

    Article  Google Scholar 

  • Gwynne, D. T. (1987). Sex-biased predation and the risky mate-locating behaviour of male tick-tock cicadas (Homoptera: Cicadidae). Animal Behaviour, 35, 571–576.

    Article  Google Scholar 

  • Gwynne, D. T. (1989). Does copulation increase the risk of predation? Trends in Ecology & Evolution, 4, 54–56.

    Article  CAS  Google Scholar 

  • Gwynne, D. T. (2008). Sexual conflict over nuptial gifts in insects. Annual Review of Entomology, 53, 83–101.

    Article  PubMed  CAS  Google Scholar 

  • Hack, M. A. (1997). The energetic costs of fighting in the house cricket, Acheta domesticus L. Behavioral Ecology, 8, 28–36.

    Article  Google Scholar 

  • Hellriegel, B., & Blanckenhorn, W. U. (2002). Environmental influences on the gametic investment of yellow dung fly males. Evolutionary Ecology, 16, 505–522.

    Article  Google Scholar 

  • Herberstein, M. E., Gaskett, A. C., Schneider, J. M., Vella, N. G. F., & Elgar, M. A. (2005). Limits to male copulation frequency: Sexual cannibalism and sterility in St Andrew’s cross spiders (Araneae, Araneidae). Ethology, 111, 1050–1061.

    Article  Google Scholar 

  • Himuro, C., & Fujisaki, K. (2010). Mating experience weakens starvation tolerance in the seed bug Togo hemipterus (Heteroptera: Lygaeidae). Physiological Entomology, 35, 128–133.

    Article  Google Scholar 

  • Hoback, W. W., & Wagner, W. E., Jr. (1997). The energetic cost of calling in the variable field cricket, Gryllus lineaticeps. Physiological Entomology, 22, 286–290.

    Article  Google Scholar 

  • Hoefler, C. D. (2008). The costs of male courtship and potential benefits of male choice for large mates in Phidippus clarus (Araneae, Salticidae). Journal of Arachnology, 36, 210–212.

    Article  Google Scholar 

  • Hughes, L., Chang, B. S. W., Wagner, D., & Pierce, N. E. (2000). Effects of mating history on ejaculate size, fecundity, longevity, and copulation duration in the ant-tended lycaenid butterfly, Jalmenus evagoras. Behavioral Ecology and Sociobiology, 47, 119–128.

    Article  Google Scholar 

  • Hunt, J., Brooks, R., Jennions, M. D., Smith, M. J., Bentsen, C. L., & Bussiere, L. F. (2004). High-quality male field crickets invest heavily in sexual display but die young. Nature, 432, 1024–1027.

    Article  PubMed  CAS  Google Scholar 

  • Ingleby, F. C., Lewis, Z., & Wedell, N. (2010). Level of sperm competition promotes evolution of male ejaculate allocation patterns in a moth. Animal Behaviour, 80, 37–43.

    Article  Google Scholar 

  • Jennions, M. D., Moller, A. P., & Petrie, M. (2001). Sexually selected traits and adult survival: A meta-analysis. Quarterly Review of Biology, 76, 3–36.

    Article  PubMed  CAS  Google Scholar 

  • Kaitala, A. (1991). Phenotypic plasticity in reproductive behavior of waterstriders: Trade-offs between reproduction and longevity during food stress. Functional Ecology, 5, 12–18.

    Article  Google Scholar 

  • Kaitala, A., & Axen, A. H. (2000). Egg load and mating status of the golden egg bug affect predation risk. Ecology, 81, 876–880.

    Article  Google Scholar 

  • Kaitala, A., Gamberale-Stille, G., & Swartling, S. (2003). Egg carrying attracts enemies in a cryptic coreid bug (Phyllomorpha laciniata). Journal of Insect Behavior, 16, 319–328.

    Article  Google Scholar 

  • Katvala, M., Rönn, J. L., & Arnqvist, G. (2008). Correlated evolution between male ejaculate allocation and female remating behaviour in seed beetles (Bruchidae). Journal of Evolutionary Biology, 21, 471–479.

    Article  PubMed  CAS  Google Scholar 

  • Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., & Whitlock, M. C. (2012). Experimental evolution. Trends in Ecology & Evolution, 27, 547–560.

    Article  Google Scholar 

  • Kelly, C. D., & Jennions, M. D. (2011). Sexual selection and sperm quantity: Meta-analyses of strategic ejaculation. Biological Reviews, 86, 863–884.

    Article  PubMed  Google Scholar 

  • Kemp, D. J., & Wiklund, C. (2001). Fighting without weaponry: A review of male–male contest competition in butterflies. Behavioral Ecology and Sociobiology, 49, 429–442.

    Article  Google Scholar 

  • Kerr, A. M., Gershman, S. N., & Sakaluk, S. K. (2010). Experimentally induced spermatophore production and immune responses reveal a trade-off in crickets. Behavioral Ecology, 21, 647–654.

    Article  Google Scholar 

  • Kight, S. L., Sprague, J., Kruse, K. C., & Johnson, L. (1995). Are egg-bearing male water bugs, Belostoma flumineum Say (Hemiptera: Belostomatidae) impaired swimmers? Journal of the Kansas Entomological Society, 68, 468–470.

    Google Scholar 

  • Kim, T. W., Sakamoto, K., Henmi, Y., & Choe, J. C. (2008). To court or not to court: Reproductive decisions by male fiddler crabs in response to fluctuating food availability. Behavioral Ecology and Sociobiology, 62, 1139–1147.

    Article  Google Scholar 

  • Knell, R. J., & Webberley, K. M. (2004). Sexually transmitted diseases of insects: Distribution, evolution, ecology and host behaviour. Biological Reviews, 79, 557–581.

    Article  PubMed  Google Scholar 

  • Koga, T., Backwell, P. R. Y., Christy, J. H., Murai, M., & Kasuya, E. (2001). Male-biased predation of a fiddler crab. Animal Behaviour, 62, 201–207.

    Article  Google Scholar 

  • Koga, T., Backwell, P. R. Y., Jennions, M. D., & Christy, J. H. (1998). Elevated predation risk changes mating behaviour and courtship in a fiddler crab. Proceedings of the Royal Society B, 265, 1385–1390.

    Article  Google Scholar 

  • Kotiaho, J. S. (2001). Costs of sexual traits: a mismatch between theoretical considerations and empirical evidence. Biological Reviews, 76, 365–376.

    Article  PubMed  CAS  Google Scholar 

  • Kotiaho, J., Alatalo, R. V., Mappes, J., Parri, S., & Rivero, A. (1998). Male mating success and risk of predation in a wolf spider: A balance between sexual and natural selection? Journal of Animal Ecology, 67, 287–291.

    Article  Google Scholar 

  • Kuriwada, T., & Kasuya, E. (2009). Longer copulation duration increases the risk of injury during copulation in the male bell cricket Meloimorpha japonica. Entomological Science, 12, 141–146.

    Article  Google Scholar 

  • Lawniczak, M. K. N., Barnes, A. I., Linklater, J. R., Boone, J. M., Wigby, S., & Chapman, T. (2007). Mating and immunity in invertebrates. Trends in Ecology & Evolution, 22, 48–55.

    Article  Google Scholar 

  • Leman, J. C., Weddle, C. B., Gershman, S. N., Kerr, A. M., Ower, G. D., St John, J. M., et al. (2009). Lovesick: Immunological costs of mating to male sagebrush crickets. Journal of Evolutionary Biology, 22, 163–171.

    Article  PubMed  CAS  Google Scholar 

  • Levan, K. E., Fedina, T. Y., & Lewis, S. M. (2009). Testing multiple hypotheses for the maintenance of male homosexual behaviour in flour beetles. Journal of Evolutionary Biology, 22, 60–70.

    Article  PubMed  CAS  Google Scholar 

  • Lewis, Z., Sasaki, H., & Miyatake, T. (2011). Sex starved: do resource-limited males ensure fertilization success at the expense of precopulatory mating success? Animal Behaviour, 81, 579–583.

    Article  Google Scholar 

  • Lindström, L., Ahtiainen, J. J., Mappes, J., Kotiaho, J. S., Lyytinen, A., & Alatalo, R. V. (2006). Negatively condition dependent predation cost of a positively condition dependent sexual signalling. Journal of Evolutionary Biology, 19, 649–656.

    Article  PubMed  Google Scholar 

  • MacNally, R., & Young, D. (1981). Some energetics of the bladder cicada, Cystosoma saundersii. Journal of Experimental Biology, 90, 185–196.

    Google Scholar 

  • Magnhagen, C. (1991). Predation risk as a cost of reproduction. Trends in Ecology & Evolution, 6, 183–186.

    Article  CAS  Google Scholar 

  • Magrath, M. J. L., & Komdeur, J. (2003). Is male care compromised by additional mating opportunity? Trends in Ecology & Evolution, 18, 424–430.

    Article  Google Scholar 

  • Maklakov, A. A., & Bonduriansky, R. (2009). Sex differences in survival costs of homosexual and heterosexual interactions: Evidence from a fly and a beetle. Animal Behaviour, 77, 1375–1379.

    Article  Google Scholar 

  • Mappes, J., Alatalo, R. V., Kotiaho, J., & Parri, S. (1996). Viability costs of condition-dependent sexual male display in a drumming wolf spider. Proceedings of the Royal Society B, 263, 785–789.

    Article  Google Scholar 

  • Marcotte, M., Delisle, J., & McNeil, J. N. (2005). Impact of male mating history on the temporal sperm dynamics of Choristoneura rosaceana and C. fumiferana females. Journal of Insect Physiology, 51, 537–544.

    Article  PubMed  CAS  Google Scholar 

  • Martin, O. Y., & Hosken, D. J. (2003). Costs and benefits of evolving under experimentally enforced polyandry or monogamy. Evolution, 57, 2765–2772.

    PubMed  Google Scholar 

  • Martin, O. Y., & Hosken, D. J. (2004). Copulation reduces male but not female longevity in Saltella sphondylli (Diptera: Sepsidae). Journal of Evolutionary Biology, 17, 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Martín, J., López, P., & Cooper, W. E. (2003). Loss of mating opportunities influences refuge use in the Iberian rock lizard Lacerta monticola. Behavioral Ecology and Sociobiology, 54, 505–510.

    Article  Google Scholar 

  • Maxwell, M. R. (1999). The risk of cannibalism and male mating behavior in the Mediterranean praying mantid, Iris oratoria. Behaviour, 136, 205–219.

    Article  Google Scholar 

  • McKean, K. A., & Nunney, L. (2001). Increased sexual activity reduces male immune function in Drosophila melanogaster. Proceedings of the Royal Society B, 98, 7904–7909.

    CAS  Google Scholar 

  • McKean, K. A., Yourth, C. P., Lazzaro, B. P., & Clark, A. G. (2008). The evolutionary costs of immunological maintenance and deployment. BMC Evolutionary Biology, 8, 76.

    Article  PubMed  CAS  Google Scholar 

  • McNamara, K. B., Elgar, M. A., & Jones, T. M. (2008). A longevity cost of re-mating but no benefits of polyandry in the almond moth, Cadra cautella. Behavioral Ecology and Sociobiology, 62, 1433–1440.

    Article  Google Scholar 

  • Michalczyk, L., Millard, A. L., Martin, O. Y., Lumley, A. J., Emerson, B. C., & Gage, M. J. G. (2011). Experimental evolution exposes female and male responses to sexual selection and conflict in Tribolium castaneum. Evolution, 65, 713–724.

    Article  PubMed  Google Scholar 

  • Miettinen, M., Kaitala, A., Smith, R. L., & Ordonez, R. M. (2006). Do egg carrying and protracted copulation affect mobility in the golden egg bug? Journal of Insect Behavior, 19, 171–178.

    Article  Google Scholar 

  • Monaghan, P., Charmantier, A., Nussey, D. H., & Ricklefs, R. E. (2008). The evolutionary ecology of senescence. Functional Ecology, 22, 371–378.

    Article  Google Scholar 

  • Morrell, L. J. (2004). Are behavioural trade-offs all they seem? Counter-intuitive resolution of the conflict between two behaviours. Behavioral Ecology and Sociobiology, 56, 539–545.

    Article  Google Scholar 

  • Nakayama, S., & Miyatake, T. (2010). Genetic trade-off between abilities to avoid attack and to mate: A cost of tonic immobility. Biology Letters, 6, 18–20.

    Article  PubMed  Google Scholar 

  • Oku, K. (2009). Effects of density experience on mate guarding behavior by adult male Kanzawa spider mites. Journal of Ethology, 27, 279–283.

    Article  Google Scholar 

  • Oliver, C., & Cordero, C. (2009). Multiple mating reduces male survivorship but not ejaculate size in the polygamous insect Stenomacra marginella (Heteroptera: Largidae). Evolutionary Ecology, 23, 417–424.

    Article  Google Scholar 

  • Omkar, & Mishra, G. (2005). Mating in aphidophagous ladybirds: Costs and benefits. Journal of Applied Entomology, 129, 432–436.

  • Papadopoulos, N. T., Liedo, P., Müller, H. G., Wang, J. L., Molleman, F., & Carey, J. R. (2010). Cost of preproduction in male medflies: The primacy of sexual courting in extreme longevity reduction. Journal of Insect Physiology, 56, 283–287.

    Article  PubMed  CAS  Google Scholar 

  • Parker, G. A. (2006). Sexual conflict over mating and fertilization: An overview. Philosophical Transactions of the Royal Society B, 361, 235–259.

    Article  CAS  Google Scholar 

  • Parker, G. A., & Partridge, L. (1998). Sexual conflict and speciation. Philosophical Transactions of the Royal Society B, 353, 261–274.

    Article  CAS  Google Scholar 

  • Parker, G. A., & Pizzari, T. (2010). Sperm competition and ejaculate economics. Biological Reviews, 85, 897–934.

    PubMed  Google Scholar 

  • Parker, D. J., & Vahed, K. (2010). The intensity of pre- and post-copulatory mate guarding in relation to spermatophore transfer in the cricket Gryllus bimaculatus. Journal of Ethology, 28, 245–249.

    Article  Google Scholar 

  • Partridge, L., & Farquhar, M. (1981). Sexual activity reduces lifespan of male fruitflies. Nature, 294, 580–582.

    Article  Google Scholar 

  • Paukku, S., & Kotiaho, J. S. (2005). Cost of reproduction in Callosobruchus maculatus: Effects of mating on male longevity and the effect of male mating status on female longevity. Journal of Insect Physiology, 51, 1220–1226.

    Article  PubMed  CAS  Google Scholar 

  • Pereira, R., Sivinski, J., Teal, P., & Brockmann, J. (2010). Enhancing male sexual success in a lekking fly (Anastrepha suspensa Diptera: Tephritidae) through a juvenile hormone analog has no effect on adult mortality. Journal of Insect Physiology, 56, 1552–1557.

    Article  PubMed  CAS  Google Scholar 

  • Perez-Staples, D., & Aluja, M. (2006). Sperm allocation and cost of mating in a tropical tephritid fruit fly. Journal of Insect Physiology, 52, 839–845.

    Article  PubMed  CAS  Google Scholar 

  • Pizzari, T., & Parker, G. A. (2009). Sperm competition and sperm phenotype. In T. R. Birkhead, D. J. Hosken, & S. Pitnick (Eds.), Sperm biology: An evolutionary perspective (pp. 207–245). Burlington, USA: Academic Press.

    Chapter  Google Scholar 

  • Polis, G. A., Barnes, J. D., Seely, M. K., Henschel, J. R., & Enders, M. M. (1998). Predation as a major cost of reproduction in Namib desert Tenebrionid beetles. Ecology, 79, 2560–2566.

    Article  Google Scholar 

  • Rantala, M. J., & Kortet, R. (2003). Courtship song and immune function in the field cricket Gryllus bimaculatus. Biological Journal of the Linnean Society, 79, 503–510.

    Article  Google Scholar 

  • Rantala, M. J., Koskimäki, J., Taskinen, J., Tynkkynen, K., & Suhonen, J. (2000). Immunocompetence, developmental stability and wingspot size in the damselfly Calopteryx splendens L. Proceedings of the Royal Society B, 267, 2453–2457.

    Article  PubMed  CAS  Google Scholar 

  • Reaney, L. T. (2007). Foraging and mating opportunities influence refuge use in the fiddler crab, Uca mjoebergi. Animal Behaviour, 73, 711–716.

    Article  Google Scholar 

  • Reinhardt, K. (2007). Ejaculate size varies with remating interval in the grasshopper Chorthippus parallelus erythropus (Caelifera: Acrididae). European Journal of Entomology, 104, 725–729.

    Google Scholar 

  • Reinhold, K., Greenfield, M. D., Jang, Y. W., & Broce, A. (1998). Energetic cost of sexual attractiveness: Ultrasonic advertisement in wax moths. Animal Behaviour, 55, 905–913.

    Article  PubMed  Google Scholar 

  • Reznick, D., Nunney, L., & Tessier, A. (2000). Big houses, big cars, superfleas and the costs of reproduction. Trends in Ecology & Evolution, 15, 421–425.

    Article  Google Scholar 

  • Robinson, B. W., & Doyle, R. W. (1985). Trade-off between male reproduction (Amplexus) and growth in the amphipod Gammarus lawrencianus. Biological Bulletin, 168, 482–488.

    Article  Google Scholar 

  • Rolff, J., & Siva-Jothy, M. T. (2002). Copulation corrupts immunity: A mechanism for a cost of mating in insects. Proceedings of the National Academy of Sciences USA, 99, 9916–9918.

    Article  CAS  Google Scholar 

  • Rondeau, A., & Sainte-Marie, B. (2001). Variable mate-guarding time and sperm allocation by male snow crabs (Chionoecetes opilio) in response to sexual competition, and their impact on the mating success of females. Biological Bulletin, 201, 204–217.

    Article  PubMed  CAS  Google Scholar 

  • Rönn, J. L., Katvala, M., & Arnqvist, G. (2008). Interspecific variation in ejaculate allocation and associated effects on female fitness in seed beetles. Journal of Evolutionary Biology, 21, 461–470.

    Article  PubMed  Google Scholar 

  • Rose, M., & Charlesworth, B. (1980). A test of evolutionary theories of senescence. Nature, 287, 141–142.

    Article  PubMed  CAS  Google Scholar 

  • Rowe, L. (1994). The costs of mating and mate choice in water striders. Animal Behaviour, 48, 1049–1056.

    Article  Google Scholar 

  • Ryne, C. (2009). Homosexual interactions in bed bugs: Alarm pheromones as male recognition signals. Animal Behaviour, 78, 1471–1475.

    Article  Google Scholar 

  • Saeki, Y., Kruse, K. C., & Switzer, P. V. (2005). Physiological costs of mate guarding in the Japanese beetle (Popillia japonica Newman). Ethology, 111, 863–877.

    Article  Google Scholar 

  • Santangelo, N., Itzkowitz, M., Richter, M., & Haley, M. P. (2002). Resource attractiveness of the male beaugregory damselfish and his decision to court or defend. Behavioral Ecology, 13, 676–681.

    Article  Google Scholar 

  • Sbilordo, S. H., Grazer, V. M., Demont, M., & Martin, O. Y. (2011). Impacts of starvation on male reproductive success in Tribolium castaneum. Evolutionary Ecology Research, 13, 347–359.

    Google Scholar 

  • Scharf, I., Lubin, Y., & Ovadia, O. (2011). Foraging decisions and behavioural flexibility in trap-building predators: A review. Biological Reviews, 86, 626–639.

    Article  PubMed  Google Scholar 

  • Schneider, J. M., & Lubin, Y. (1998). Intersexual conflict in spiders. Oikos, 83, 496–506.

    Article  Google Scholar 

  • Segers, F. H. I. D., & Taborsky, B. (2011). Egg size and food abundance interactively affect juvenile growth and behaviour. Functional Ecology, 25, 166–176.

    Article  Google Scholar 

  • Service, P. M. (1989). The effect of mating status on lifespan, egg laying, and starvation resistance in Drosophila melanogaster in relation to selection on longevity. Journal of Insect Physiology, 35, 447–452.

    Article  Google Scholar 

  • Sih, A., Krupa, J., & Travers, S. (1990). An experimental study on the effects of predation risk and feeding regime on the mating behavior of the water strider. American Naturalist, 135, 284–290.

    Article  Google Scholar 

  • Simmons, L. W., & Kvarnemo, C. (2006). Costs of breeding and their effects on the direction of sexual selection. Proceedings of the Royal Society B, 273, 465–470.

    Article  PubMed  Google Scholar 

  • Simmons, L. W., Zuk, M., & Rotenberry, J. T. (2005). Immune function reflected in calling song characteristics in a natural population of the cricket Teleogryllus commodus. Animal Behaviour, 69, 1235–1241.

    Article  Google Scholar 

  • Siva-Jothy, M. T. (2000). A mechanistic link between parasite resistance and expression of a sexually selected trait in a damselfly. Proceedings of the Royal Society B, 267, 2523–2527.

    Article  PubMed  CAS  Google Scholar 

  • Siva-Jothy, M. T., Tsubaki, Y., & Hooper, R. E. (1998). Decreased immune response as a proximate cost of copulation and oviposition in a damselfly. Physiological Entomology, 23, 274–277.

    Article  Google Scholar 

  • Solensky, M. J., & Oberhauser, K. S. (2009). Male monarch butterflies, Danaus plexippus, adjust ejaculates in response to intensity of sperm competition. Animal Behaviour, 77, 465–472.

    Article  Google Scholar 

  • South, S. H., Steiner, D., & Arnqvist, G. (2009). Male mating costs in a polygynous mosquito with ornaments expressed in both sexes. Proceedings of the Royal Society B, 276, 3671–3678.

    Article  PubMed  Google Scholar 

  • Sparkes, T. C., Keogh, D. P., & Pary, R. A. (1996). Energetic costs of mate guarding behavior in male stream-dwelling isopods. Oecologia, 106, 166–171.

    Article  Google Scholar 

  • Spratt, E. C. (1980). Male homosexual behaviour and other factors influencing adult longevity in Tribolium castaneum (Herbst) and T. confusum Duval. Journal of Stored Products Research, 16, 109–114.

    Article  Google Scholar 

  • Stearns, S. C. (1992). The evolution of life histories. Oxford: Oxford University Press.

    Google Scholar 

  • Steiger, S., Franz, R., Eggert, A. K., & Müller, J. K. (2008). The Coolidge effect, individual recognition and selection for distinctive cuticular signatures in a burying beetle. Proceedings of the Royal Society B, 275, 1831–1838.

    Article  PubMed  Google Scholar 

  • Stjernholm, F., & Karlsson, B. (2006). Reproductive expenditure affects utilization of thoracic and abdominal resources in male Pieris napi butterflies. Functional Ecology, 20, 442–448.

    Article  Google Scholar 

  • Svensson, G. P., Löfstedt, C., & Skals, N. (2004). The odour makes the difference: Male moths attracted by sex pheromones ignore the threat by predatory bats. Oikos, 104, 91–97.

    Article  Google Scholar 

  • Svensson, B. G., Petersson, E., & Forsgren, E. (1989). Why do males of the dance fly Empis borealis refuse to mate? The importance of female age and size. Journal of Insect Behavior, 2, 387–395.

    Article  Google Scholar 

  • Torres-Vila, L. M., & Jennions, M. D. (2005). Male mating history and female fecundity in the Lepidoptera: Do male virgins make better partners? Behavioral Ecology and Sociobiology, 57, 318–326.

    Article  Google Scholar 

  • Valtonen, T. M., Viitaniemi, H., & Rantala, M. J. (2010). Copulation enhances resistance against an entomopathogenic fungus in the mealworm beetle Tenebrio molitor. Parasitology, 137, 985–989.

    Article  PubMed  Google Scholar 

  • Van Duren, L. A., & Videler, J. J. (1996). The trade-off between feeding, mate seeking and predator avoidance in copepods: Behavioural responses to chemical cues. Journal of Plankton Research, 18, 805–818.

    Article  Google Scholar 

  • Van Voorhies, W. A. (1992). Production of sperm reduces nematode lifespan. Nature, 360, 456–458.

    Article  PubMed  Google Scholar 

  • Verdolin, J. L. (2006). Meta-analysis of foraging and predation risk trade-offs in terrestrial systems. Behavioral Ecology and Sociobiology, 60, 457–464.

    Article  Google Scholar 

  • Waage, J. K. (1988). Confusion over residency and the escalation of damselfly territorial disputes. Animal Behaviour, 36, 586–595.

    Article  Google Scholar 

  • Ward, P. I. (1986). A comparative field study of the breeding behaviour of a stream and a pond population of Gammarus pulex (Amphipoda). Oikos, 46, 29–36.

    Article  Google Scholar 

  • Wedell, N. (2010). Variation in male courtship costs in butterflies. Behavioral Ecology and Sociobiology, 64, 1385–1391.

    Article  Google Scholar 

  • Wedell, N., Gage, M. J. G., & Parker, G. A. (2002). Sperm competition, male prudence and sperm-limited females. Trends in Ecology & Evolution, 17, 313–319.

    Article  Google Scholar 

  • Zahavi, A., & Zahavi, A. (1997). The handicap principle: A missing piece of Darwin’s puzzle. Oxford: Oxford University Press.

    Google Scholar 

  • Zuk, M., & Kolluru, G. R. (1998). Exploitation of sexual signals by predators and parasitoids. Quarterly Review of Biology, 73, 415–438.

    Article  Google Scholar 

  • Zuk, M., & McKean, K. A. (1996). Sex differences in parasite infections: Patterns and processes. International Journal of Parasitology, 26, 1009–1024.

    PubMed  CAS  Google Scholar 

  • Zuk, M., Rotenberry, J. T., & Simmons, L. W. (1998). Calling songs of field crickets (Teleogryllus oceanicus) with and without phonotactic parasitoid infection. Evolution, 52, 166–171.

    Article  Google Scholar 

Download references

Acknowledgments

O.Y.M. thanks the Swiss National Science Foundation for support (Ambizione grants PZ00P3_121777/1 and PZ00P3_137514/1; standard research grant 31003A_125144/1). The authors thank Susanne Foitzik, Robert D. Martin, Sonja Sbilordo and the anonymous reviewers for helpful comments on earlier versions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inon Scharf.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 398 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scharf, I., Peter, F. & Martin, O.Y. Reproductive Trade-Offs and Direct Costs for Males in Arthropods. Evol Biol 40, 169–184 (2013). https://doi.org/10.1007/s11692-012-9213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-012-9213-4

Keywords

Navigation