Skip to main content
Log in

Homology: Homeostatic Property Cluster Kinds in Systematics and Evolution

  • Essay
  • Published:
Evolutionary Biology Aims and scope Submit manuscript

Abstract

Taxa and homologues can in our view be construed both as kinds and as individuals. However, the conceptualization of taxa as natural kinds in the sense of homeostatic property cluster kinds has been criticized by some systematists, as it seems that even such kinds cannot evolve due to their being homeostatic. We reply by arguing that the treatment of transformational and taxic homologies, respectively, as dynamic and static aspects of the same homeostatic property cluster kind represents a good perspective for supporting the conceptualization of taxa as kinds. The focus on a phenomenon of homology based on causal processes (e.g., connectivity, activity-function, genetics, inheritance, and modularity) and implying relationship with modification yields a notion of natural kinds conforming to the phylogenetic-evolutionary framework. Nevertheless, homeostatic property cluster kinds in taxonomic and evolutionary practice must be rooted in the primacy of epistemological classification (homology as observational properties) over metaphysical generalization (series of transformation and common ancestry as unobservational processes). The perspective of individuating characters exclusively by historical-transformational independence instead of their developmental, structural, and functional independence fails to yield a sufficient practical interplay between theory and observation. Purely ontological and ostensional perspectives in evolution and phylogeny (e.g., an ideographic character concept and PhyloCode’s ‘individualism’ of clades) may be pragmatically contested in the case of urgent issues in biodiversity research, conservation, and systematics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Assis, L. C. S. (in preparation). Coherence, correspondence, and the renaissance of morphology in phylogenetic systematics.

  • Boyd, R. (1991). Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical Studies, 61(1–2), 127–148. doi:10.1007/BF00385837.

    Article  Google Scholar 

  • Boyd, R. (1999). Homeostasis, species, and higher taxa. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 141–185). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Brigandt, I. (2007). Typology now: Homology and developmental constraints explain evolvability. Biology and Philosophy, 22(5), 709–725. doi:10.1007/s10539-007-9089-3.

    Article  Google Scholar 

  • Brigandt, I. (2009). Natural kinds in evolution and systematics: Metaphysical and epistemological considerations. Acta Biotheoretica. doi:10.1007/s10441-008-9056-7.

  • Brower, A. V. Z., & Schawaroch, V. (1996). Three steps of homology assessment. Cladistics, 12(3), 265–272.

    Google Scholar 

  • Bryant, H. N. (2001). Character polarity and the rooting of cladograms. In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 319–338). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • Cantino, P. D., & de Queiroz, K. (2007). PhyloCode. International code of phylogenetic nomenclature, version 4a. Retrieved from http://www.ohiou.edu/phylocode/.

  • de Carvalho, M. R., Bockmann, F. A., Amorim, D. S., & Brandão, C. R. F. (2008). Systematics must embrace comparative biology and evolution, not speed and automation. Evolutionary Biology, 35(2), 150–157. doi:10.1007/s11692-008-9018-7.

    Article  Google Scholar 

  • de Pinna, M. C. C. (1991). Concepts and tests of homology in the cladistic paradigm. Cladistics, 7(4), 367–394. doi:10.1111/j.1096-0031.1991.tb00045.x.

    Article  Google Scholar 

  • Dupré, J. (1981). Natural kinds and biological taxa. The Philosophical Review, 90(1), 66–90. doi:10.2307/2184373.

    Article  Google Scholar 

  • Dupré, J. (1999). On the impossibility of a monistic account of species. In R. A. Wilson (Ed.), Species: New interdisciplinary essays (pp. 3–22). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Ereshesfky, M. (2007). Foundational issues concerning taxa names. Systematic Biology, 56(2), 295–301. doi:10.1080/10635150701317401.

    Article  Google Scholar 

  • Franz, N. M. (2005). Outline of an explanatory account of cladistic practice. Biology and Philosophy, 20(2–3), 489–515. doi:10.1007/s10539-004-0757-2.

    Google Scholar 

  • Ghiselin, M. T. (2005). Homology as a relation of correspondence between parts of individuals. Theory in Biosciences, 124(2), 91–103.

    PubMed  Google Scholar 

  • Grant, T., Frost, D. R., Caldwell, J. P., Gagliardo, R., Haddad, C. F. B., Kok, J. R., et al. (2006). Phylogenetic systematics of dart-poison frogs and their relatives (Anura: Athesphatanura: Dendrobatidae). Bulletin of the American Museum of Natural History, 299(1), 1–262. doi:10.1206/0003-0090(2006)299[1:PSODFA]2.0.CO;2.

    Article  Google Scholar 

  • Grant, T., & Kluge, A. G. (2004). Transformation series as an ideographic character concept. Cladistics, 20(1), 23–31. doi:10.1111/j.1096-0031.2004.00003.x.

    Article  Google Scholar 

  • Hendrikse, J. L., Parsons, T. E., & Hallgrimsson, B. (2007). Evolvability as the proper focus of evolutionary developmental biology. Evolution & Development, 9(4), 393–401.

    Google Scholar 

  • Hennig, W. (1966). Phylogenetic systematics. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Jamniczky, H. A. (2008). Phenotypic integration patterns support an account of homology as a manifestation of evolvability. Evolutionary Biology, 35(4), 312–316. doi:10.1007/s11692-008-9039-2.

    Article  Google Scholar 

  • Kearney, M., & Rieppel, O. (2006). Rejecting the “given” in systematics. Cladistics, 22(4), 369–377. doi:10.1111/j.1096-0031.2006.00110.x.

    Article  Google Scholar 

  • Keller, R. A., Boyd, R. N., & Wheeler, Q. D. (2003). The illogical basis of phylogenetic nomenclature. Botanical Review, 69(1), 93–110. doi:10.1663/0006-8101(2003)069[0093:TIBOPN]2.0.CO;2.

    Article  Google Scholar 

  • Kluge, A. G. (2003). On the deduction of species relationships: A précis. Cladistics, 19(3), 233–239.

    Google Scholar 

  • LaPorte, J. (2004). Natural kinds and conceptual change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nelson, G. (1989a). Cladistics and evolutionary models. Cladistics, 5(3), 275–289. doi:10.1111/j.1096-0031.1989.tb00490.x.

    Article  Google Scholar 

  • Nelson, G. (1989b). Species and taxa: Systematics and evolution. In D. Otte & J. A. Endler (Eds.), Speciation and its consequences (pp. 60–81). Sunderland, MA: Sinauer Associates.

    Google Scholar 

  • Nelson, G. (1994). Homology and systematics. In B. K. Hall (Ed.), Homology: The hierarchical basis of comparative biology (pp. 101–149). San Diego, CA: Academic Press.

    Google Scholar 

  • Nixon, K. C., Carpenter, J. M., & Stevenson, D. W. (2003). The PhyloCode is fatally flawed, and the “Linnaean” system can easily be fixed. Botanical Review, 69(1), 111–120. doi:10.1663/0006-8101(2003)069[0111:TPIFFA]2.0.CO;2.

    Article  Google Scholar 

  • Patterson, C. (1982). Morphological characters and homology. In K. A. Joysey & A. E. Friday (Eds.), Problems of phylogenetic reconstruction (pp. 21–74). London: Academic Press.

    Google Scholar 

  • Pleijel, F., & Härlin, M. (2004). Phylogenetic nomenclature is compatible with diverse philosophical perspectives. Zoologica Scripta, 33(6), 587–591. doi:10.1111/j.0300-3256.2004.00164.x.

    Article  Google Scholar 

  • Rieppel, O. C. (1988). Fundamentals of comparative biology. Basel, Switzerland: Birkhäuser Verlag.

    Google Scholar 

  • Rieppel, O. (1999). Turtle origins. Science, 283(5404), 945–946. doi:10.1126/science.283.5404.945.

    Article  PubMed  CAS  Google Scholar 

  • Rieppel, O. (2003). Semaphoronts, cladograms and the roots of total evidence. Biological Journal of the Linnean Society. Linnean Society of London, 80(1), 167–186. doi:10.1046/j.1095-8312.2003.00228.x.

    Article  Google Scholar 

  • Rieppel, O. (2004). The language of systematics, and the philosophy of ‘total evidence’. Systematics and Biodiversity, 2(1), 9–19. doi:10.1017/S147720000400132X.

    Article  Google Scholar 

  • Rieppel, O. (2005a). Monophyly, paraphyly, and natural kinds. Biology and Philosophy, 20(2–3), 465–487. doi:10.1007/s10539-004-0679-z.

    Google Scholar 

  • Rieppel, O. (2005b). Modules, kinds, and homology. Journal of Experimental Zoology. Part B. Molecular and Developmental Evolution, 304(1), 18–27. doi:10.1002/jez.b.21025.

    Article  PubMed  Google Scholar 

  • Rieppel, O. (2006). The PhyloCode: A critical discussion of its theoretical foundation. Cladistics, 22(2), 186–197. doi:10.1111/j.1096-0031.2006.00097.x.

    Article  Google Scholar 

  • Rieppel, O. (2007a). Species: Kinds of individuals or individuals of a kind. Cladistics, 23(4), 373–384. doi:10.1111/j.1096-0031.2007.00152.x.

    Article  Google Scholar 

  • Rieppel, O. (2007b). The performance of morphological characters in broad-scale phylogenetic analyses. Biological Journal of the Linnean Society. Linnean Society of London, 92(2), 297–308. doi:10.1111/j.1095-8312.2007.00847.x.

    Article  Google Scholar 

  • Rieppel, O. (2008). Origins, taxa, names and meanings. Cladistics, 24(4), 598–610. doi:10.1111/j.1096-0031.2007.00195.x.

    Article  Google Scholar 

  • Rieppel, O., & Kearney, M. (2002). Similarity. Biological Journal of the Linnean Society Linnean Society of London, 75(1), 59–82. doi:10.1046/j.1095-8312.2002.00006.x.

    Article  Google Scholar 

  • Schlosser, G., & Wagner, G. P. (Eds.). (2004). Modularity in development and evolution. Chicago: University of Chicago Press.

    Google Scholar 

  • von Dassow, G., & Munro, E. (1999). Modularity in animal development and evolution: Elements for a conceptual framework for evodevo. Journal of Experimental Zoology. Part B. Molecular Developmental Evolution, 285(4), 307–325.

    Article  Google Scholar 

  • Wagner, G. P. (1996). Homologues, natural kinds, and the evolution of modularity. American Zoologist, 36(1), 36–43.

    Google Scholar 

  • Wagner, G. P. (2001). Characters, units, and natural kinds: An introduction. In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 1–10). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews. Genetics, 8(6), 473–479. doi:10.1038/nrg2099.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, G. P., & Laubichler, M. D. (2001). Character identification: The role of the organism. In G. P. Wagner (Ed.), The character concept in evolutionary biology (pp. 141–163). San Diego, CA: Academic Press.

    Chapter  Google Scholar 

  • Wheeler, Q. D. (2004). Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359(1444), 571–583. doi:10.1098/rstb.2003.1452.

    Article  PubMed  Google Scholar 

  • Wheeler, Q. D., & Meier, R. (Eds.). (2000). Species concepts and phylogenetic theory: A debate. New York: Columbia University Press.

    Google Scholar 

  • Wilson, R. A., Barker, M. A., & Brigandt, I. (in press). When traditional essentialism fails: Biological natural kinds. Philosophical Topics, 35(1/2).

  • Yang, A. S. (2001). Modularity, evolvability, and adaptive radiations: A comparison of the hemi-holometabolous insects. Evolution & Development, 3(2), 59–72. doi:10.1046/j.1525-142x.2001.003002059.x.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Leonardo Borges, Gareth Nelson, Olivier Rieppel, and Marcelo Trovó for constructive and helpful comments on earlier versions of this article. This article is part of Leandro Assis’s PhD thesis developed at the Universidade de São Paulo and supported by FAPESP (03/13176-8; 04/14535-4) and in part by IAPT Research Grants in Plant Systematics 2007. Ingo Brigandt’s work was funded with an Izaak Walton Killam Memorial Postdoctoral Fellowship by the Killam Trusts of Canada, and with Standard Research Grant 410-2008-0400 by the Social Sciences and Humanities Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro C. S. Assis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Assis, L.C.S., Brigandt, I. Homology: Homeostatic Property Cluster Kinds in Systematics and Evolution. Evol Biol 36, 248–255 (2009). https://doi.org/10.1007/s11692-009-9054-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11692-009-9054-y

Keywords

Navigation