Skip to main content
Log in

Role of Austenitization and Pre-Deformation on the Kinetics of the Isothermal Bainitic Transformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The role of time-temperature path on the isothermal austenite-to-bainite phase transformation of low alloy 51 CrV 4 steel was investigated and the corresponding microstructures were analyzed. The important finding is that an incomplete initial austenitization treatment leaves undissolved carbides in the matrix, such that lower carbon and chromium content in the matrix result, eventually accelerating the phase transformation. Furthermore, the residual carbides constitute additional nucleation sites for the bainite plates, speeding up the process even further. Also, both plastic pre-deformation of the supercooled austenite and application of external elastic stresses during the phase transformation lead to transformation plasticity by enhancing the stress fields, providing a driving force for the growth of bainite plates along a preferred orientation. Overall, the current results constitute the first step toward establishing a database for constructing a realistic microstructure-based model for simulating metal forming operations involving austenite-to-bainite phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Atlas zur Wärmebehandlung der Stähle, Verlag Stahleisen, Düsseldorf, 1961.

  2. J. Wei, O. Kessler, M. Hunkel, F. Hoffmann, and P. Mayr: Steel Res. Int., 2004, vol. 75 (11), pp. 759–65.

    CAS  Google Scholar 

  3. U. Weidig, K. Hübner, and K. Steinhoff: Steel Res. Int., 2008, vol 7 (1), pp. 59–65.

    Google Scholar 

  4. M. Maikranz-Valentin, U. Weidig, U. Schoof, H.-H. Becker, and K. Steinhoff: Steel Res. Int., 2008, vol 79 (2), pp. 92–97.

    CAS  Google Scholar 

  5. L.C. Chang and H.K.D.H. Bhadeshia: J. Mater. Sci., 1996, vol. 31, pp. 2145–48.

    Article  ADS  CAS  Google Scholar 

  6. U. Ahrens, G. Besserdich, and H.J. Maier: HTM, 2002, vol. 57 (2), pp. 99–105.

    CAS  Google Scholar 

  7. T. Antretter, F.D. Fischer, K. Tanaka, and G. Cailltaud: Steel Res. Int., 2002, vol. 73 (6,7), pp. 225–35.

    CAS  Google Scholar 

  8. A. Matsuzaki, H.K.D.H. Bhadeshia, and H. Harada: Acta Metall. Mater., 1994, vol. 42 (4), pp. 1081–90.

    Article  CAS  Google Scholar 

  9. P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Eng. A, 1995, vol. 201, pp. 143–49.

    Article  Google Scholar 

  10. P. Ding, T. Inoue, S. Imatani, D.-Y. Ju, and E. de Vries: Mater. Sci. Res. Int., 2001, vol. 7 (1), pp. 19–26.

    CAS  Google Scholar 

  11. J. Wei, O. Kessler, M. Hunkel, F. Hoffmann, and P. Mayr: Mater. Sci. Technol., 2004, vol. 20, pp. 909–14.

    Article  CAS  Google Scholar 

  12. J.B. Leblond, J. Devaux, and J.C. Devaux: Int. J. Plast., 1989, vol. 5, pp. 551–72.

    Article  CAS  Google Scholar 

  13. L. Taleb and F.A. Sidoroff: Int. J. Plast., 2003, vol. 19, pp. 1821–42.

    Article  MATH  CAS  Google Scholar 

  14. M. Wolff, M. Böhm, G. Lowisch, and A. Schmidt: Comp. Mater. Sci., 2005, vol. 32, pp. 604–10.

    Article  CAS  Google Scholar 

  15. F. Marketz and F.D. Fischer: Modell. Simul. Mater. Sci. Eng., 1994, vol. 2, pp. 1017–46.

    Article  ADS  CAS  Google Scholar 

  16. G. Reisner, E.A. Werner, and F.D. Fischer: Int. J. Solids Struct., 1998, vol. 35 (19), pp. 2457–73.

    Article  MATH  Google Scholar 

  17. F.D. Fischer, G. Reisner, E. Werner, K. Tanaka, G. Cailletaud, and T. Antretter: Int. J. Plast., 2000, vol. 16, pp. 723–48.

    Article  MATH  CAS  Google Scholar 

  18. L. Taleb and S. Petit-Grostabussiat: J. Phys. IV, 2002, vol. 12, pp. Pr11 187–94.

    Google Scholar 

  19. S. Grostabussiat, L. Taleb, J.F. Jullien, and F. Sidoroff: J. Phys. IV, 2001, vol. 11, pp. Pr4 173–80.

    Article  Google Scholar 

  20. U. Ahrens, H.J. Maier, and A.EL.M. Maksoud: J. Phys. IV, 2004, vol. 120, pp. 615–23.

    CAS  Google Scholar 

  21. H.J. Maier, S. Tschumak, U. Weidig, and K. Steinhoff: Steel Res. Int., 2008, vol. 79 (2), pp. 105–10.

    CAS  Google Scholar 

  22. C.C. Liu, D.-Y. Yu, K.F. Yao, Z. Liu, and X.J. Xu: Mater. Sci. Technol., 2001, vol. 17, pp. 1229–37.

    Article  CAS  Google Scholar 

  23. L. Taleb and S. Petit: Int. J. Plast., 2006, vol. 22, pp. 110–30.

    Article  MATH  CAS  Google Scholar 

  24. R.H. Larn and J.R. Yang: Mater. Sci. Eng., 2000, vol. A278, pp. 278–91.

    CAS  Google Scholar 

  25. P.H. Shipway and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1995, vol. 11, pp. 1116–28.

    CAS  Google Scholar 

  26. U. Ahrens, G. Besserdich, and H.J. Maier: HTM, 2000, vol. 55 (6), pp. 329–38.

    CAS  Google Scholar 

  27. C.L. Magee: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 1966.

  28. G.W. Greenwood and R.H. Johnson: Proc. R. Soc. London, Ser. A, 1965, vol. 283 (1394), pp. 403–22.

    Article  ADS  Google Scholar 

  29. S. Kundu, K. Hase, and H.K.D.H. Bhadeshia: Proc. R. Soc. A, 2007, vol. 463, pp. 2309–28.

    Article  ADS  CAS  Google Scholar 

  30. H.K.D.H. Bhadeshia: in Hot Workability of Steels and Light Alloys—Composites, H.J. McQueen, E.V. Konpleva, and N.D. Ryan, eds., Canadian Institute of Mining, Minearals and Petroleum, Montreal, 1996, pp. 543–56.

    Google Scholar 

  31. B. Wynne, B. Hutchinson, and L. Ryde: Scripta Mater., 2007, vol. 57, pp. 473–76.

    Article  CAS  Google Scholar 

  32. F. Frerichs, T. Lübben, F. Hoffmann, and H.-W. Zoch: Steel Res. Int., 2007, vol. 78, (7), pp. 560–65.

    CAS  Google Scholar 

  33. M. Dalgic and G. Löwisch: Mat.-wiss. Werkstofftech., 2006, vol. 37 (1), pp. 122–27.

    Article  CAS  Google Scholar 

  34. C. Bröcker, K. Steinhoff, and A. Matzenmiller: Comp. Meth. Mater. Sci., 2008, vol. 8, pp. 144–53.

  35. T.A. Kop, J. Sietsma, and S. van der Zwaag: Mater. Sci. Eng., 2002 vol. A323, pp. 403–08.

    CAS  Google Scholar 

  36. S.C. Baik, S.-H. Park, O. Kwon, D.-I. Kim, and K.H. Oh: ISIJ Int., 2006, vol. 46 (4), pp. 599 and 605.

  37. A. Matuzaki and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1999, vol. 15, pp. 518–22.

    Article  Google Scholar 

  38. M. Umemoto, K. Horiuchi, and I. Tamuara: Trans. ISIJ Int., 1982, vol. 22, pp. 854–61.

    Google Scholar 

  39. J. Wang, P.J. van der Wolk, and S. vand der Zwaag: ISIJ Int., 1999, vol. 39 (10), pp. 1038–46.

    Article  CAS  Google Scholar 

  40. H. Bungardt, H. Preisendanz, and H. Brandis: Ber. des Vereins deutscher Eisenhüttenleute No. 1267, Düsseldorf.

  41. C.M. Wayman and H.K.D.H. Bhadeshia: in Physical Metallurgy, R.W. Cahn and P. Hassen, eds., Elsevier, Holland, 1996, pp. 1507–54.

    Chapter  Google Scholar 

  42. H.K.D.H. Bhadeshia: Bainite in Steels, 2nd ed., Institute of Materials, London, 2001.

    Google Scholar 

  43. H.-G. Lambers, S. Tschumak, and H.J. Maier: Proc. 2nd Int. Conf. on Distortion Engineering-IDE 2008, in press.

  44. P.S. Bate and W.B. Hutchinson: J. Appl. Cryst., 2008, vol. 41, pp. 210–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support by Deutsche Forschungsgemeinschaft within the Transregional Collaborative Research Centre TRR 30 “Prozessintegrierte Herstellung funktional gradierter Strukturen auf der Grundlage thermo-mechanisch gekoppelter Phänomene” is gratefully acknowledged. The authors also thank Mr. Juri Burow, University of Bochum, for carrying out the EBSD measurements presented herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. J. Maier.

Additional information

Manuscript submitted August 27, 2008.

Appendix

Appendix

The austenite-to-bainite phase transition is accompanied by a characteristic volume change, which can be determined from the simultaneously measured axial (ε a ) and diametral strain (ε d )[6]

$$ \frac{\Updelta V}{V} = (1 + \varepsilon_{a} ) {\cdot} (1 + \varepsilon_{d} )^{2} - 1 $$
(1)

The volume fraction of the new phase (w(t)) is obtained through normalization as

$$ w(t) = \frac{\Updelta V}{V}(t)/\frac{\Updelta V}{V}(t \to \infty ) $$
(2)

In addition, transformation plasticity (ε TP ) with respect to the loading direction can be determined as

$$ \varepsilon_{TP} (t) = \varepsilon_{a} (t) - \frac{\Updelta V}{3V}(t) = \frac{2}{3}(\varepsilon_{a} (t) - \varepsilon_{d} (t)) $$
(3)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lambers, HG., Tschumak, S., Maier, H.J. et al. Role of Austenitization and Pre-Deformation on the Kinetics of the Isothermal Bainitic Transformation. Metall Mater Trans A 40, 1355–1366 (2009). https://doi.org/10.1007/s11661-009-9827-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9827-z

Keywords

Navigation