Skip to main content
Log in

Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

This article has been updated

Abstract

Aerospace aluminum alloy is the most used structural material for rockets, aircraft, spacecraft, and space stations. The deterioration of surface integrity of dry machining and the insufficient heat transfer capacity of minimal quantity lubrication have become the bottleneck of lubrication and heat dissipation of aerospace aluminum alloy. However, the excellent thermal conductivity and tribological properties of nanofluids are expected to fill this gap. The traditional milling force models are mainly based on empirical models and finite element simulations, which are insufficient to guide industrial manufacturing. In this study, the milling force of the integral end milling cutter is deduced by force analysis of the milling cutter element and numerical simulation. The instantaneous milling force model of the integral end milling cutter is established under the condition of dry and nanofluid minimal quantity lubrication (NMQL) based on the dual mechanism of the shear effect on the rake face of the milling cutter and the plow cutting effect on the flank surface. A single factor experiment is designed to introduce NMQL and the milling feed factor into the instantaneous milling force coefficient. The average absolute errors in the prediction of milling forces for the NMQL are 13.3%, 2.3%, and 7.6% in the x-, y-, and z-direction, respectively. Compared with the milling forces obtained by dry milling, those by NMQL decrease by 21.4%, 17.7%, and 18.5% in the x-, y-, and z-direction, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 30 March 2023

    The issue number has been corrected

References

  1. Wahab M A, Park J H, Alam M S, Pang S S. Effect of corrosion prevention compounds on fatigue life in 2024-T3 aluminum alloy. Journal of Materials Processing Technology, 2006, 174(1–3): 211–217

    Article  Google Scholar 

  2. Oguri K. Fatigue life enhancement of aluminum alloy for aircraft by fine particle shot peening (FPSP). Journal of Materials Processing Technology, 2011, 211(8): 1395–1399

    Article  Google Scholar 

  3. Yang Y Y, Gong Y D, Li C H, Wen X L, Sun J Y. Mechanical performance of 316 L stainless steel by hybrid directed energy deposition and thermal milling process. Journal of Materials Processing Technology, 2020, 291: 117023

    Article  Google Scholar 

  4. Yuan J L, Lyu B H, Hang W, Deng Q F. Review on the progress of ultra-precision machining technologies. Frontiers of Mechanical Engineering, 2017, 12(2): 158–180

    Article  Google Scholar 

  5. Qi H, Qin S K, Cheng Z C, Zou Y L, Cai D H, Wen D H. DEM and experimental study on the ultrasonic vibration-assisted abrasive finishing of WC-8Co cemented carbide cutting edge. Powder Technology, 2021, 378: 716–723

    Article  Google Scholar 

  6. Qu S S, Yao P, Gong Y D, Yang Y Y, Chu D K, Zhu Q S. Modelling and grinding characteristics of unidirectional C—SiCs. Ceramics International, 2022, 48(6): 8314–8324

    Article  Google Scholar 

  7. Chen X Z, Li C B, Tang Y, Li L, Li H C. Energy efficient cutting parameter optimization. Frontiers of Mechanical Engineering, 2021, 16(2): 221–248

    Article  Google Scholar 

  8. Qin C J, Tao J F, Shi H T, Xiao D G, Li B C, Liu C L. A novel Chebyshev-wavelet-based approach for accurate and fast prediction of milling stability. Precision Engineering, 2020, 62: 244–255

    Article  Google Scholar 

  9. Huang Z W, Zhu J N, Lei J T, Li X R, Tian F Q. Tool wear predicting based on multi-domain feature fusion by deep convolutional neural network in milling operations. Journal of Intelligent Manufacturing, 2020, 31(4): 953–966

    Article  Google Scholar 

  10. Li X, Zhao W, Li L, He N, Chi S W. Modeling and application of process damping in milling of thin-walled workpiece made of titanium alloy. Shock and Vibration, 2015, 431476

  11. Jiang X H, Kong X J, He S R, Wu K. Modeling the superposition of residual stresses induced by cutting force and heat during the milling of thin-walled parts. Journal of Manufacturing Processes, 2021, 68: 356–370

    Article  Google Scholar 

  12. Niccolò G, Lorenzo M, Antonio S, Gianni C. A frequency-based analysis of cutting force for depths of cut identification in peripheral end-milling. Mechanical Systems and Signal Processing, 2022, 171: 108943

    Article  Google Scholar 

  13. Song Y, Qu D, Wu B, Cao H J. Composite light ropes model-based dynamics force prediction model of high speed dry milling UD-CF/PEEK considering size effect. Journal of Manufacturing Processes, 2022, 76: 210–222

    Article  Google Scholar 

  14. Liao Z R, Axinte D, Gao D. On modelling of cutting force and temperature in bone milling. Journal of Materials Processing Technology, 2019, 266: 627–638

    Article  Google Scholar 

  15. Farhadmanesh M, Ahmadi K. Online identification of mechanistic milling force models. Mechanical Systems and Signal Processing, 2021, 149: 107318

    Article  Google Scholar 

  16. Zheng L, Chiou Y S, Liang S Y. Three dimensional cutting force analysis in end milling. International Journal of Mechanical Sciences, 1996, 38(3): 259–269

    Article  Google Scholar 

  17. Yun W S, Cho D W. Accurate 3-D cutting force prediction using cutting condition independent coefficients in end milling. International Journal of Machine Tools and Manufacture, 2001, 41(4): 463–478

    Article  Google Scholar 

  18. Desai K A, Agarwal P K, Rao P V M. Process geometry modeling with cutter runout for milling of curved surfaces. International Journal of Machine Tools and Manufacture, 2009, 49(12–13): 1015–1028

    Article  Google Scholar 

  19. Montgomery D, Altintas Y. Mechanism of cutting force and surface generation in dynamic milling. Journal of Engineering for Industry, 1991, 113(2): 160–168

    Article  Google Scholar 

  20. Rao V S, Rao P V M. Effect of workpiece curvature on cutting forces and surface error in peripheral milling. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2006, 220(9): 1399–1407

    Article  Google Scholar 

  21. Koenigsberger F, Sabberwal A J P. An investigation into the cutting force pulsations during milling operations. International Journal of Machine Tool Design and Research, 1961, 1(1–2): 15–33

    Article  Google Scholar 

  22. Sutherland J W, DeVor R E. An improved method for cutting force and surface error prediction in flexible end milling systems. Journal of Engineering for Industry, 1986, 108(4): 269–279

    Article  Google Scholar 

  23. Budak E, Altintas Y. Peripheral milling conditions for improved dimensional accuracy. International Journal of Machine Tools and Manufacture, 1994, 34(7): 907–918

    Article  Google Scholar 

  24. Armarego E J A, Whitfield R. C. Computer based modelling of popular machining operations for force and power prediction. CIRP Annals, 1985, 34(1): 65–69

    Article  Google Scholar 

  25. Davoudinejad A, Parenti P, Annoni M. 3D finite element prediction of chip flow, burr formation, and cutting forces in micro end-milling of aluminum 6061-T6. Frontiers of Mechanical Engineering, 2017, 12(2): 203–214

    Article  Google Scholar 

  26. Altintas Y. Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design. 2nd ed. Cambridge: Cambridge University Press, 2012

    Book  Google Scholar 

  27. Chen Y H, Lu J, Deng Q L, Ma J Y, Liao X P. Modeling study of milling force considering tool runout at different types of radial cutting depth. Journal of Manufacturing Processes, 2022, 76: 486–503

    Article  Google Scholar 

  28. Wang C X, Zhang X W, Zhai Z, Chen X F. Parametric prediction model and periodic fluctuation interpretation of unidirectional CFRP edge milling force. Composite Structures, 2022, 287: 115387

    Article  Google Scholar 

  29. Wang F J, Li Y, Zhang B Y, Deng J, Lin Y Q, Yang L L, Fu R. Theoretical model of instantaneous milling force for CFRP milling with a ball-end milling cutter: considering spatial dimension and temporal dimension discontinuity effects. Journal of Manufacturing Processes, 2022, 75: 346–362

    Article  Google Scholar 

  30. Arnaud L, Gonzalo O, Seguy S, Jauregi H, Peigné G. Simulation of low rigidity part machining applied to thin-walled structures. The International Journal of Advanced Manufacturing Technology, 2011, 54(5): 479–488

    Article  Google Scholar 

  31. Zaghbani I, Songmene V. A force-temperature model including a constitutive law for dry High speed milling of aluminium alloys. Journal of Materials Processing Technology, 2009, 209(5): 2532–2544

    Article  Google Scholar 

  32. Merdol S D. Mechanics and dynamics of serrated end mills. Thesis for the Master’s Degree. Vancouver: University of British Columbia, 2003

    Google Scholar 

  33. Gradišek J, Kalveram M, Weinert K. Mechanistic identification of specific force coefficients for a general end mill. International Journal of Machine Tools and Manufacture, 2004, 44(4): 401–414

    Article  Google Scholar 

  34. Wan M, Pan W J, Zhang W H, Ma Y C, Yang Y. A unified instantaneous cutting force model for flat end mills with variable geometries. Journal of Materials Processing Technology, 2014, 214(3): 641–650

    Article  Google Scholar 

  35. Sun T, Qin L F, Fu Y C, Liu C Q, Shi R L. Mathematical modeling of cutting layer geometry and cutting force in orthogonal turn-milling. Journal of Materials Processing Technology, 2021, 290: 116992

    Article  Google Scholar 

  36. Cai S J, Cai Z Q, Yao B, Shen Z H, Ma X F. Identifying the transient milling force coefficient of a slender end-milling cutter with vibrations. Journal of Manufacturing Processes, 2021, 67: 262–274

    Article  Google Scholar 

  37. Coz G L, Marinescu M, Devillez A, Dudzinski D, Velnom L. Measuring temperature of rotating cutting tools: application to MQL drilling and dry milling of aerospace alloys. Applied Thermal Engineering, 2012, 36: 434–441

    Article  Google Scholar 

  38. Bruni C, Forcellese A, Gabrielli F, Simoncini M. Effect of the lubrication-cooling technique, insert technology and machine bed material on the workpart surface finish and tool wear in finish turning of AISI 420B. International Journal of Machine Tools and Manufacture, 2006, 46(12–13): 1547–1554

    Article  Google Scholar 

  39. Yang M, Li C H, Luo L, Li R Z, Long Y Z. Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. International Communications in Heat and Mass Transfer, 2021, 125: 105317

    Article  Google Scholar 

  40. Yang M, Li C H, Zhang Y B, Jia D Z, Li R Z, Hou Y L, Cao H J, Wang J. Predictive model for minimum chip thickness and size effect in single diamond grain grinding of zirconia ceramics under different lubricating conditions. Ceramics International, 2019, 45(12): 14908–14920

    Article  Google Scholar 

  41. Zhang X P, Li C H, Zhang Y B, Wang Y G, Li B K, Yang M, Guo S M, Liu G T, Zhang N Q. Lubricating property of MQL grinding of Al2O3/SiC mixed nanofluid with different particle sizes and microtopography analysis by cross-correlation. Precision Engineering, 2017, 47: 532–545

    Article  Google Scholar 

  42. Wang X M, Li C H, Zhang Y B, Ding W F, Yang M, Gao T, Cao H J, Xu X F, Wang D Z, Zafar S, Debnath S, Jamil M, Ali H M. Vegetable oil-based nanofluid minimum quantity lubrication turning: academic review and perspectives. Journal of Manufacturing Processes, 2020, 59: 76–97

    Article  Google Scholar 

  43. Wang X M, Li C H, Zhang Y B, Zafar S, Debnath S, Sharma S, Yang M, Gao T. Influence of texture shape and arrangement on nanofluid minimum quantity lubrication turning. The International Journal of Advanced Manufacturing Technology, 2022, 119(1): 631–646

    Article  Google Scholar 

  44. Iyappan S K, Ghosh A. Small quantity lubrication assisted end milling of aluminium using sunflower oil. International Journal of Precision Engineering and Manufacturing—Green Technology, 2020, 7(2): 337–345

    Article  Google Scholar 

  45. Haq M A U, Hussain S, Ali M A, Farooq M U, Mufti N A, Pruncu C I, Wasim A. Evaluating the effects of nano-fluids based MQL milling of IN718 associated to sustainable productions. Journal of Cleaner Production, 2021, 310: 127463

    Article  Google Scholar 

  46. Li H N, Wang J P, Wu C Q, Zhao Y J, Xu, J, Liu X L, Zhu W Q. Damage behaviors of unidirectional CFRP in orthogonal cutting: a comparison between single- and multiple-pass strategies. Composites Part B: Engineering, 2020, 185: 107774

    Article  Google Scholar 

  47. Ni C B, Zhu L D. Investigation on machining characteristics of TC4 alloy by simultaneous application of ultrasonic vibration assisted milling (UVAM) and economical-environmental MQL technology. Journal of Materials Processing Technology, 2020, 278: 116518

    Article  Google Scholar 

  48. Jang D Y, Jung J, Seok J. Modeling and parameter optimization for cutting energy reduction in MQL milling process. International Journal of Precision Engineering and Manufacturing—Green Technology, 2016, 3(1): 5–12

    Article  Google Scholar 

  49. Zhang Y B, Li C H, Jia D Z, Li B K, Wang Y G, Yang M, Hou Y L, Zhang X W. Experimental study on the effect of nanoparticle concentration on the lubricating property of nanofluids for MQL grinding of Ni-based alloy. Journal of Materials Processing Technology, 2016, 232: 100–115

    Article  Google Scholar 

  50. Said Z, Arora S, Farooq S, Sundar L S, Li C H, Allouhi A. Recent advances on improved optical, thermal, and radiative characteristics of plasmonic nanofluids: academic insights and perspectives. Solar Energy Materials and Solar Cells, 2022, 236: 111504

    Article  Google Scholar 

  51. Said Z, Jamei M, Sundar L S, Pandey A K, Allouhi A, Li C H. Thermophysical properties of water, water and ethylene glycol mixture-based nanodiamond + Fe3O4 hybrid nanofluids: an experimental assessment and application of data-driven approaches. Journal of Molecular Liquids, 2022, 347: 117944

    Article  Google Scholar 

  52. Gaurav G, Sharma A, Dangayach G S, Meena M L. Assessment of jojoba as a pure and nano-fluid base oil in minimum quantity lubrication (MQL) hard-turning of Ti—6Al—4V: a step towards sustainable machining. Journal of Cleaner Production, 2020, 272: 122553

    Article  Google Scholar 

  53. Yang M, Li C H, Said Z, Zhang Y B, Li R Z, Debnath S, Ali H M, Gao T, Long Y Z. Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding. Journal of Manufacturing Processes, 2021, 71: 501–514

    Article  Google Scholar 

  54. Qu S S, Gong Y D, Yang Y Y, Wang W W, Liang C Y, Han B. An investigation of carbon nanofluid minimum quantity lubrication for grinding unidirectional carbon fibre-reinforced ceramic matrix composites. Journal of Cleaner Production, 2020, 249: 119353

    Article  Google Scholar 

  55. Gao T, Li C H, Yang M, Zhang Y B, Jia D Z, Ding W F, Debnath S, Yu T B, Said Z, Wang J. Mechanics analysis and predictive force models for the single-diamond grain grinding of carbon fiber reinforced polymers using CNT nano-lubricant. Journal of Materials Processing Technology, 2021, 290: 116976

    Article  Google Scholar 

  56. Gao T, Li C H, Zhang Y B, Yang M, Jia D Z, Jin T, Hou Y L, Li R Z. Dispersing mechanism and tribological performance of vegetable oil-based CNT nanofluids with different surfactants. Tribology International, 2018, 131: 51–63

    Article  Google Scholar 

  57. Wojciechowski S, Matuszak M, Powałka B, Madajewski M, Maruda R W, Królczyk G M. Prediction of cutting forces during micro end milling considering chip thickness accumulation. International Journal of Machine Tools and Manufacture, 2019, 147: 103466

    Article  Google Scholar 

  58. Kline W A, DeVor R E, Lindberg J R. The prediction of cutting forces in end milling with application to cornering cuts. International Journal of Machine Tool Design and Research, 1982, 22(1): 7–22

    Article  Google Scholar 

  59. Martellotti M E. An analysis of the milling process. Transaction of ASME, 1941, 63: 677–695

    Google Scholar 

  60. Duan Z J, Yin Q A, Li C H, Dong L, Bai X F, Zhang Y B, Yang M, Jia D Z, Li R Z, Liu Z Q. Milling force and surface morphology of 45 steel under different Al2O3 nanofluid concentrations. The International Journal of Advanced Manufacturing Technology, 2020, 107(3): 1277–1296

    Article  Google Scholar 

  61. Zhao Y J, Xu W H, Xi C Z, Liang D T, Li H N. Automatic and accurate measurement of microhardness profile based on image processing. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1–9

    Google Scholar 

  62. Yang M, Li C H, Zhang Y B, Jia D Z, Zhang X P, Hou Y L, Li R Z, Wang J. Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. International Journal of Machine Tools and Manufacture, 2017, 122: 55–65

    Article  Google Scholar 

  63. Huang B T, Zhang Y B, Wang X M, Chen Y, Cao H J, Liu B, Niu X L, Li C H. Experimental evaluation of wear mechanism and grinding performance of SG wheel in machining nickel-based alloy GH4169. Surface Technology, 2021, 50(12): 62–70 (in Chinese)

    Google Scholar 

  64. Said Z, Ghodbane M, Boumeddane B, Tiwari A K, Sundar S, Li C H, Aslfattahi N, Bellos E. Energy, exergy, economic and environmental (4E) analysis of a parabolic trough solar collector using MXene based silicone oil nanofluids. Solar Energy Materials and Solar Cells, 2022, 239: 111633

    Article  Google Scholar 

  65. Duan Z J, Li C H, Zhang Y B, Dong L, Bai X F, Yang M, Jia D Z, Li R Z, Cao H J, Xu X F. Milling surface roughness for 7050 aluminum alloy cavity influenced by nozzle position of nanofluid minimum quantity lubrication. Chinese Journal of Aeronautics, 2021, 34(6): 33–53

    Article  Google Scholar 

  66. Zhang Y R, Guo K, Sun J. Investigation on the milling performance of amputating clamping supports for machining with industrial robot. The International Journal of Advanced Manufacturing Technology, 2019, 102: 3573–3586

    Article  Google Scholar 

  67. Shi Y B, Li H L, Li J C, Zhi D J, Zhang X Y, Liu H, Wang H Q, Li H Y. Development, optimization and evaluation of emodin loaded nanoemulsion prepared by ultrasonic emulsification. Journal of Drug Delivery Science and Technology, 2015, 27: 46–55

    Article  Google Scholar 

  68. Jia D Z, Zhang N Q, Liu B, Zhou Z M, Wang X P, Zhang Y B, Mao C, Li C H. Particle size distribution characteristics of electrostatic minimum quantity lubrication and grinding surface quality evaluation. Diamond & Abrasives Engineering, 2021, 41(3): 89–95 (in Chinese)

    Google Scholar 

  69. Liu M Z, Li C H, Zhang Y B, An Q L, Yang M, Gao T, Mao C, Liu B, Cao H J, Xu X F, Said Z, Debnath S J, Jamil M, Ali H M, Sharma S. Cryogenic minimum quantity lubrication machining: from mechanism to application. Frontiers of Mechanical Engineering, 2021, 16(4): 649–697

    Article  Google Scholar 

  70. Jia D Z, Li C H, Zhang Y B, Yang M, Cao H J, Liu B, Zhou Z M. Evaluation of electro traction grinding performance and surface morphology of titanium alloy biological lubricant. Chinese Journal of Mechanical Engineering, 2022, 58(5): 198–211 (in Chinese)

    Google Scholar 

  71. Liu M Z, Li C H, Cao H J, Zhang S, Chen Y, Liu B, Zhang N Q, Zhou Z M. Research progresses and applications of CMQL machining technology. China Mechanical Engineering, 2022, 33(5): 529–550 (in Chinese)

    Google Scholar 

  72. Shi Z, Guo S M, Liu H J, Li C H, Zhang Y B, Yang M, Chen Y, Liu B, Zhou Z M, Niu X L. Experimental evaluation of minimum quantity lubrication of biological lubricant on grinding properties of GH4169 nickel-base alloy. Surface Technology, 2021, 50(12): 71–84 (in Chinese)

    Google Scholar 

  73. ang X M, Li C H, Zhang Y B, Yang M, Zhou Z M, Chen Y, Liu B, Wang D Z. Research progress on enabled atomization and supply system of minimum quantity lubrication. Surface Technology, 2022, 51(9): 1–14 (in Chinese)

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant Nos. 51975305, 51905289, 52105457, and 52105264), the National Key R&D Program of China (Grant No. 2020YFB2010500), the Key Projects of Shandong Natural Science Foundation, China (Grant Nos. ZR2020KE027, ZR2020ME158, and ZR2021QE116), the Major Science and Technology Innovation Engineering Projects of Shandong Province, China (Grant No. 2019JZZY020111), the Source Innovation Project of Qingdao West Coast New Area, China (Grant Nos. 2020-97 and 2020-98).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changhe Li or Yanbin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Z., Li, C., Zhang, Y. et al. Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological lubricant. Front. Mech. Eng. 18, 4 (2023). https://doi.org/10.1007/s11465-022-0720-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11465-022-0720-4

Keywords

Navigation