Skip to main content
Log in

Nonholonomic motion planning for a free-falling cat using spline approximation

  • Article
  • Published:
Science China Physics, Mechanics and Astronomy Aims and scope Submit manuscript

Abstract

An optimal motion planning of a free-falling cat based on the spline approximation is investigated. Nonholonomicity arises in a free-falling cat subjected to nonintegrable velocity constraints or nonintegrable conservation laws. The equation of dynamics of a free-falling cat is obtained by using the model of two symmetric rigid bodies. The control of the system can be converted to the motion planning problem for a driftless system. A cost function is used to incorporate the final errors and control energy. The motion planning is to determine control inputs to minimize the cost function and is formulated as an infinite dimensional optimal control problem. By using the control parameterization, the infinite dimensional optimal control problem can be transformed to a finite dimensional one. The particle swarm optimization (PSO) algorithm with the cubic spline approximation is proposed to solve the finite dimension optimal control problem. The cubic spline approximation is introduced to realize the control parameterization. The resulting controls are smooth and the initial and terminal values of the control inputs are zeros, so they can be easily generated by experiment. Simulations are also performed for the nonholonomic motion planning of a free-falling cat. Simulated experimental results show that the proposed algorithm is more effective than the Newtoian algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Marey M. Des mouvements que certains animaux exécutent pour retomber sur leurs pieds, lorsqu’ils sont précipités d’un lieu élevé. Comp Rend Acad Sci Paris, 1984, (119): 714–717; Guyon M. Note relative à la communication de M. Marey. Comp Rend Acad Sci Paris, 1984, (119): 717–718; Liu Y Z. On the turning motion of a free-falling cat (in Chinese). Acta Mech Sin, 1982, 14 (4): 388–393

    Google Scholar 

  2. McDonald D A. How dose a falling cat turn over. Am J Physiol, 1955, 129: 34–35

    Google Scholar 

  3. Лойцянский Л Г, Лурье А И. Курс Теоретичес Коймеханики. Москва: Гостехиэдат, 1954

    Google Scholar 

  4. Kane T R, Scher M P. A dynamical explanation of the falling cat phenomenon. Int J Solids Struct, 1969, 5(7): 663–670

    Article  Google Scholar 

  5. Brockett R W, Dai L. Nonholonomic kinematics and the role of elliptic functions in constructive controllability. Li Z, Canny J F, eds. Nonholonomic Motion Planning. Norwell, Massachusetts: Kluwer, 1993. 1–22

    Chapter  Google Scholar 

  6. Murray R M, Sastry S S. Nonholonomic motion planning: Steering using sinusoids. IEEE Trans Automatic Control, 1993, 38(5): 700–716

    Article  MathSciNet  MATH  Google Scholar 

  7. Reyhanoglu M. A general nonholonomic motion planning strategy for Caplygin systems. In: Proceedings of the 33rd IEEE Conference on Decision and Control. Florida, USA, 1994. 2964–2966

  8. Mukherjee R, Anderson D P. A Surface integral approach to the motion planning of nonholonomic systems. ASME J Dyn Syst Measur Control, 1994, 116(9): 315–325

    Article  MATH  Google Scholar 

  9. Fernandes C, Gurvits L, Li Z. Near-optimal nonholonomic motion planning for a system of coupled rigid bodies. IEEE Trans Automation Control, 1995, 39(3): 450–464

    Article  MathSciNet  Google Scholar 

  10. Yih C C, Ro P I. Near-optimal motion planning for nonholonomic systems using multipoint shooting method. In: Proc. IEEE Conf. Robotics and Automation, Minneapolis, M N, 1996. 2943–2948

  11. Yih C C, Ro P I. Near-optimal motion planning for nonholonomic systems with state/input constraints via quasi-Newton method. In: Proc. IEEE Conf. Robotics and Automation, Albuquerque, New Mexico, 1997. 1430–1435

  12. Duleba I, Sasiadek J Z. Nonholonomic motion planning based on newton algorithm with energy optimization. IEEE Trans Control Syst Tech, 2003, 11(3): 355–363

    Article  Google Scholar 

  13. Tsuchiya K, Urakubo T, Tsujita K. Motion control of a nonholonomic systems based on the Lyapunov control method. J Guidance Control Dyn, 2002, 25(2): 285–290

    Article  Google Scholar 

  14. Ge X S, Chen L Q. Optimal control of nonholonomic motion planning for a free-falling cat. Appl Math Mech, 2007, 28(5): 601–607

    Article  MathSciNet  MATH  Google Scholar 

  15. Murray R M, Li Z, Sastry S S. A Mathematical Introduction to Robotic Manipulation. CRC Press, 1994

  16. Burden R L, Faires J D. Numerical Analysis. 7th ed. Beijing: Higher Education Press and Thomson Learning, 2001

    Google Scholar 

  17. Joshi M C, Moudgalya K N. Optimization Theory and Practices. Harrow, U. K.: ASI Ltd., 2004

    Google Scholar 

  18. Ge X S, Chen L Q, Liu Y Z. Nonlinear attitude control of an underactuated spacecraft using wavelet approximate method. Prog Nat Sci, 2006, 17(8): 868–873

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XinSheng Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, X., Guo, Z. Nonholonomic motion planning for a free-falling cat using spline approximation. Sci. China Phys. Mech. Astron. 55, 2100–2105 (2012). https://doi.org/10.1007/s11433-012-4891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-012-4891-6

Keywords

Navigation