Skip to main content
Log in

Volcanism in the Solar System

  • Review
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

Volcanic activity is the main process for heat-material exchange and circulation for differentiated planets. All terrestrial planets in the Solar System, the Moon, the satellites of giant planets, and the dwarf planets once experienced or are currently experiencing volcanic activities. This paper summarized the volcanism (main volcanic features and their formation) on the Moon, Mars, Venus, and Mercury in the inner Solar System, volcanism and cryovolcanism on satellites (Io, Europa, Enceladus) of giant planets, as well as volcanism on dwarf planets including Cere in the main asteroid belt and Pluto in the Kuiper belt. This work shows volcanism in the Solar System is driven by various factors, forming abundant volcanic landforms. It has significant meanings to compare volcanism happening on different planets using comparative planetology approaches for a better understanding of volcanism, the planetary habitability, and the information contained on the origin and evolution of planets in the Solar System.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandfield J L, Edwards C S, Montgomery D R, Brand B D. 2013. The dual nature of the martian crust: Young lavas and old clastic materials. Icarus, 222: 188–199

    Article  Google Scholar 

  • Bandfield J L, Hamilton V E, Christensen P R. 2000. A global view of Martian surface compositions from MGS-TES. Science, 287: 1626–1630

    Article  Google Scholar 

  • Baratoux D, Toplis M J, Monnereau M, Gasnault O. 2011. Thermal history of Mars inferred from orbital geochemistry of volcanic provinces. Nature, 472: 338–341

    Article  Google Scholar 

  • Barboni M, Boehnke P, Keller B, Kohl I E, Schoene B, Young E D, McKeegan K D. 2017. Early formation of the Moon 4.51 billion years ago. Sci Adv, 3: e1602365

    Article  Google Scholar 

  • Besse S, Doressoundiram A, Barraud O, Griton L, Cornet T, Munoz C, Varatharajan I, Helbert J. 2020. Spectral properties and physical extent of pyroclastic deposits on Mercury: Variability within selected deposits and implications for explosive volcanism. J Geophys Res-Planets, 125: E2018JE005879

    Article  Google Scholar 

  • Besse S, Doressoundiram A, Benkhoff J. 2015. Spectroscopic properties of explosive volcanism within the Caloris basin with MESSENGER observations. J Geophys Res-Planets, 120: 2102–2117

    Article  Google Scholar 

  • Beyer R A, McEwen A S. 2005. Layering stratigraphy ofeastern Coprates and northern Capri Chasmata, Mars. Icarus, 179: 1–23

    Article  Google Scholar 

  • Bland M T, Raymond C A, Schenk P M, Fu R R, Kneissl T, Pasckert J H, Hiesinger H, Preusker F, Park R S, Marchi S, King S D, Castillo-Rogez J C, Russell C T. 2016. Composition and structure of the shallow subsurface of Ceres revealed by crater morphology. Nat Geosci, 9: 538–542

    Article  Google Scholar 

  • Bleacher J E, Greeley R, Williams D A, Cave S R, Neukum G. 2007. Trends in effusive style at the Tharsis Montes, Mars, and implications for the development of the Tharsis province. J Geophys Res-Planets, 112: E09005

    Article  Google Scholar 

  • Bondarenko N V, Head J W, Ivanov M A. 2010. Present-day volcanism on Venus: Evidence from microwave radiometry. Geophys Res Lett, 37: L23202

    Article  Google Scholar 

  • Boynton W V, Taylor G J, Evans L G, Reedy R C, Starr R, Janes D M, Kerry K E, Drake D M, Kim K J, Williams R M S, Crombie M K, Dohm J M, Baker V, Metzger A E, Karunatillake S, Keller J M, Newsom H E, Arnold J R, Brückner J, Englert P A J, Gasnault O, Sprague A L, Mitrofanov I, Squyres S W, Trombka J I, d’Uston L, Wänke H, Hamara D K. 2007. Concentration of H, Si, Cl, K, Fe, and Th in the low- and mid-latitude regions of Mars. J Geophys Res, 112: E12

    Google Scholar 

  • Braden S E, Stopar J D, Robinson M S, Lawrence S J, van der Bogert C H, Hiesinger H. 2014. Evidence for basaltic volcanism on the Moon within the past 100 million years. Nat Geosci, 7: 787–791

    Article  Google Scholar 

  • Broquet A, Andrews-Hanna J C. 2022. Is there an active mantle plume beneath Elysium Planitia? Houston: 53rd Lunar and Planetary Science Conference. Abstract#2351

  • Broz P, Bernhardt H, Conway S J, Parekh R. 2021. An overview of explosive volcanism on Mars. J Volcanol Geotherm Res, 409: 107125

    Article  Google Scholar 

  • Broz P, Cadek O, Hauber E, Rossi A P. 2015. Scoria cones on Mars: Detailed investigation of morphometry based on high-resolution digital elevation models. J Geophys Res-Planets, 120: 1512–1527

    Article  Google Scholar 

  • Broz P, Hauber E. 2013. Hydrovolcanic tuff rings and cones as indicators for phreatomagmatic explosive eruptions on Mars. J Geophys Res-Planets, 118: 1656–1675

    Article  Google Scholar 

  • Byrne P K, Ostrach L R, Fassett C I, Chapman C R, Denevi B W, Evans A J, Klimczak C, Banks M E, Head J W, Solomon S C. 2016. Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga. Geophys Res Lett, 43: 7408–7416

    Article  Google Scholar 

  • Byrne P K, Whitten J L, Klimczak C, McCubbin F M, Ostrach L R. 2018. The Volcanic Character of Mercury. In: Solomon S C, Nittler L R, Anderson B J, eds. Mercury: The View After MESSENGER. Cambridge: Cambridge Planetary Science. 287–323

    Chapter  Google Scholar 

  • Byrne P K. 2020. A comparison of inner Solar System volcanism. Nat Astron, 4: 321–327

    Article  Google Scholar 

  • Carlson R W, Smythe W D, Lopes-Gautier R M C, Davies A G, Kamp L W, Mosher J A, Soderblom L A, Leader F E, Mehlman R, Clark R N, Fanale F P. 1997. The distribution of sulfur dioxide and other infrared absorbers on the surface of Io. Geophys Res Lett, 24: 2479–2482

    Article  Google Scholar 

  • Carter J, Poulet F. 2013. Ancient plutonic processes on Mars inferred from the detection of possible anorthositic terrains. Nat Geosci, 6: 1008–1012

    Article  Google Scholar 

  • Castillo-Rogez J C, Hesse M A, Formisano M, Sizemore H, Bland M, Ermakov A I, Fu R R. 2019. Conditions for the long-term preservation of a deep brine reservoir in Ceres. Geophys Res Lett, 46: 1963–1972

    Article  Google Scholar 

  • Castillo-Rogez J C, McCord T B. 2010. Ceres’ evolution and present state constrained by shape data. Icarus, 205: 443–459

    Article  Google Scholar 

  • Castillo-Rogez J C, Neveu M, Scully J E C, House C H, Quick L C, Bouquet A, Miller K, Bland M, De Sanctis M C, Ermakov A, Hendrix A R, Prettyman T H, Raymond C A, Russell C T, Sherwood B E, Young E. 2020. Ceres: Astrobiological target and possible ocean world. Astrobiology, 20: 269–291

    Article  Google Scholar 

  • Castillo-Rogez J, Neveu M, McSween H Y, Fu R R, Toplis M J, Prettyman T. 2018. Insights into Ceres’s evolution from surface composition. Meteorit Planet Sci, 53: 1820–1843

    Article  Google Scholar 

  • Charlier B, Grove T L, Zuber M T. 2013. Phase equilibria of ultramafic compositions on Mercury and the origin of the compositional dichotomy. Earth Planet Sci Lett, 363: 50–60

    Article  Google Scholar 

  • Che X, Nemchin A, Liu D, Long T, Wang C, Norman M D, Joy K H, Tartese R, Head J, Jolliff B, Snape J F, Neal C R, Whitehouse M J, Crow C, Benedix G, Jourdan F, Yang Z, Yang C, Liu J, Xie S, Bao Z, Fan R, Li D, Li Z, Webb S G. 2021. Age and composition of young basalts on the Moon, measured from samples returned by Chang’e-5. Science, 374: 887–890

    Article  Google Scholar 

  • Christensen P R, Bandfield J L, Hamilton V E, Ruff S W, Kieffer H H, Titus T N, Malin M C, Morris R V, Lane M D, Clark R L, Jakosky B M, Mellon M T, Pearl J C, Conrath B J, Smith M D, Clancy R T, Kuzmin R O, Roush T, Mehall G L, Gorelick N, Bender K, Murray K, Dason S, Greene E, Silverman S, Greenfield M. 2001. Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J Geophys Res-Planets, 106: 23823–23871

    Article  Google Scholar 

  • Christensen P R, McSween Jr H Y, Bandfield J L, Ruff S W, Rogers A D, Hamilton V E, Gorelick N, Wyatt M B, Jakosky B M, Kieffer H H, Malin M C, Moersch J E. 2005. Evidence for magmatic evolution and diversity on Mars from infrared observations. Nature, 436: 504–509

    Article  Google Scholar 

  • Cruikshank D P, Umurhan O M, Beyer R A, Schmitt B, Keane J T, Runyon K D, Atri D, White O L, Matsuyama I, Moore J M, McKinnon W B, Sandford S A, Singer K N, Grundy W M, Dalle Ore C M, Cook J C, Bertrand T, Stern S A, Olkin C B, Weaver H A, Young L A, Spencer J R, Lisse C M, Binzel R P, Earle A M, Robbins S J, Gladstone G R, Cartwright R J, Ennico K. 2019. Recent cryovolcanism in virgil fossae on Pluto. Icarus, 330: 155–168

    Article  Google Scholar 

  • Davies A G, Keszthelyi L P, Williams D A, Phillips C B, McEwen A S, Lopes R M C, Smythe W D, Kamp L W, Soderblom L A, Carlson R W. 2001. Thermal signature, eruption style, and eruption evolution at Pele and Pillan on Io. J Geophys Res-Planets, 106: 33079–33103

    Article  Google Scholar 

  • Davies A. 2010. Terrestrial Lava Lake physical parameter estimation using a silicate cooling model-implications for a return to the Volcanic Moon, Io. In: EGU General Assembly Conference. 12: 5659

  • de Kleer K, de Pater I, Davies A G, Ádámkovics M. 2014. Near-infrared monitoring of Io and detection of a violent outburst on 29 August 2013. Icarus, 242: 352–364

    Article  Google Scholar 

  • de Pablo M, Komatsu G. 2009. Possible pingo fields in the Utopia basin, Mars: Geological and climatical implications. Icarus, 199: 49–74

    Article  Google Scholar 

  • de Pater I, Davies A G, Marchis F. 2016. Keck observations of eruptions on Io in 2003–2005. Icarus, 274: 284–296

    Article  Google Scholar 

  • de Pater I, Keane J T, de Kleer K, Davies A G. 2021. A 2020 observational perspective of Io. Annu Rev Earth Planet Sci, 49: 643–678

    Article  Google Scholar 

  • Denevi B W, Ernst C M, Meyer H M, Robinson M S, Murchie S L, Whitten J L, Head J W, Watters T R, Solomon S C, Ostrach L R, Chapman C R, Byrne P K, Klimczak C, Peplowski P N. 2013. The distribution and origin of smooth plains on Mercury. J Geophys Res-Planets, 118: 891–907

    Article  Google Scholar 

  • Deng Q, Li F, Yan J, Xiao Z, Ye M, Xiao C, Barriot J P. 2020. The thermal evolution of mercury over the past ~4.2 Ga as revealed by relaxation states of mantle plugs beneath impact basins. Geophys Res Lett, 47: e89051

    Article  Google Scholar 

  • Draper D S, Lawrence S J, Klima R S, Denevi B W, van der Bogert C H, Elardo S M, Hiesinger H H. 2021. The Inner Solar System Chronology (ISOCHRON) lunar sample return mission concept: Revealing two billion years of history. Planet Sci J, 2: 79

    Article  Google Scholar 

  • Dundas C M, McEwen A S. 2010. An assessment of evidence for pingos on Mars using HiRISE. Icarus, 205: 244–258

    Article  Google Scholar 

  • Durham W B, Kirby S H, Stern L A. 1992. Effects of dispersed particulates on the rheology of water ice at planetary conditions. J Geophys Res-Planets, 97: 20883–20897

    Article  Google Scholar 

  • El Maarry M R, Gasnault O, Toplis M J, Baratoux D, Dohm J M, Newsom H E, Boynton W V, Karunatillake S. 2009. Gamma-ray constraints on the chemical composition of the martian surface in the Tharsis region: A signature of partial melting of the mantle? J Volcanol Geotherm Res, 185: 116–122

    Article  Google Scholar 

  • Esposito L W. 1984. Sulfur dioxide: Episodic injection shows evidence for active Venus volcanism. Science, 223: 1072–1074

    Article  Google Scholar 

  • Fagents S A. 2003. Considerations for effusive cryovolcanism on Europa: The post-Galileo perspective. J Geophys Res-Planets, 108: 5139

    Article  Google Scholar 

  • Fagents S A, Lanagan P, Greeley R. 2002. Rootless cones on Mars: A consequence of lava-ground ice interaction. Geol Soc Lond Spec Publ, 202: 295–317

    Article  Google Scholar 

  • Fassett C I, Kadish S J, Head J W, Solomon S C, Strom R G. 2011. The global population of large craters on Mercury and comparison with the Moon. Geophys Res Lett, 38: L10202

    Article  Google Scholar 

  • Filiberto J, Trang D, Treiman A H, Gilmore M S. 2020. Present-day volcanism on Venus as evidenced from weathering rates of olivine. Sci Adv, 6: Eaax7445

    Article  Google Scholar 

  • Fitz-Gerald B. 2021. The origin of Rim Moat Domes. Lunar Section Circular, 14–28

    Google Scholar 

  • Francis P, Oppenheimer C. 2004. Volcanoes. Oxford: Oxford University Press. 521

    Google Scholar 

  • Frey H, Jarosewich M. 1982. Subkilometer Martian volcanoes: Properties and possible terrestrial analogs. J Geophys Res-Solid Earth, 87: 9867–9879

    Article  Google Scholar 

  • Fu R R, Ermakov A I, Marchi S, Castillo-Rogez J C, Raymond C A, Hager B H, Zuber M T, King S D, Bland M T, Cristina De Sanctis M, Preusker F, Park R S, Russell C T. 2017. The interior structure of Ceres as revealed by surface topography. Earth Planet Sci Lett, 476: 153–164

    Article  Google Scholar 

  • Garrick-Bethell I, Seritan M R K. 2021. Laccolith Model for Lunar Ring-Moat Dome Structures. The Woodlands: 52nd Lunar and Planetary Science Conference. Abstract #2369

  • Gasnault O, Jeffrey Taylor G, Karunatillake S, Dohm J, Newsom H, Forni O, Pinet P, Boynton W V. 2010. Quantitative geochemical mapping of Martian elemental provinces. Icarus, 207: 226–247

    Article  Google Scholar 

  • Geissler P, McEwen A, Phillips C, Simonelli D, Lopes R M C, Douté S. 2001. Galileo imaging of SO2 frosts on Io. J Geophys Res, 106: 33253–33266

    Article  Google Scholar 

  • Geissler P. 2015. Cryovolcanism in the outer solar system. In: Sigurdsson H, ed. The Encyclopedia of Volcanoes. New York: Academic Press. 763–776

    Chapter  Google Scholar 

  • Giardini D, Lognonné P, Banerdt W B, Pike W T, Christensen U, Ceylan S, Clinton J F, van Driel M, Stähler S C, Böse M, Garcia R F, Khan A, Panning M, Perrin C, Banfield D, Beucler E, Charalambous C, Euchner F, Horleston A, Jacob A, Kawamura T, Kedar S, Mainsant G, Scholz J R, Smrekar S E, Spiga A, Agard C, Antonangeli D, Barkaoui S, Barrett E, Combes P, Conejero V, Daubar I, Drilleau M, Ferrier C, Gabsi T, Gudkova T, Hurst K, Karakostas F, King S, Knapmeyer M, Knap-meyer-Endrun B, Llorca-Cejudo R, Lucas A, Luno L, Margerin L, McClean J B, Mimoun D, Murdoch N, Nimmo F, Nonon M, Pardo C, Rivoldini A, Manfredi J A R, Samuel H, Schimmel M, Stott A E, Stutzmann E, Teanby N, Warren T, Weber R C, Wieczorek M, Yana C. 2020. The seismicity of Mars. Nat Geosci, 13: 205–212

    Article  Google Scholar 

  • Glen J W. 1952. Experiments on the deformation of ice. J Glaciol, 2: 111–114

    Article  Google Scholar 

  • Glen J W. 1955. The creep of polycrystalline ice. Proc R Soc Lond A, 228: 519–538

    Article  Google Scholar 

  • Goldsby D L, Kohlstedt D L. 2001. Superplastic deformation of ice: Experimental observations. J Geophys Res-Solid Earth, 106: 11017–11030

    Article  Google Scholar 

  • Goudge T A, Head J W, Kerber L, Blewett D T, Denevi B W, Domingue D L, Gillis-Davis J J, Gwinner K, Helbert J, Holsclaw G M, Izenberg N R, Klima R L, McClintock W E, Murchie S L, Neumann G A, Smith D E, Strom R G, Xiao Z, Zuber M T, Solomon S C. 2014. Global inventory and characterization of pyroclastic deposits on Mercury: New insights into pyroclastic activity from MESSENGER orbital data. J Geophys Res-Planets, 119: 635–658

    Article  Google Scholar 

  • Grott M, Wieczorek M. 2012. Density and lithospheric structure at Tyr-rhena Patera, Mars, from gravity and topography data. Icarus, 221: 43–52

    Article  Google Scholar 

  • Grundy W M, Binzel R P, Buratti B J, Cook J C, Cruikshank D P, Dalle Ore C M, Earle A M, Ennico K, Howett C J A, Lunsford AW, Olkin C B, Parker A H, Philippe S, Protopapa S, Quirico E, Reuter D C, Schmitt B, Singer K N, Verbiscer A J, Beyer R A, Buie M W, Cheng A F, Jennings D E, Linscott I R, Parker J W, Schenk P M, Spencer J R, Stansberry J A, Stern S A, Throop H B, Tsang C C C, Weaver H A, Weigle II G E, Young L A. 2016. Surface compositions across Pluto and Charon. Science, 351: aad9189

    Article  Google Scholar 

  • Gülcher A J P, Gerya T V, Montési L G J, Munch J. 2020. Corona structures driven by plume-lithosphere interactions and evidence for ongoing plume activity on Venus. Nat Geosci, 13: 547–554

    Article  Google Scholar 

  • Halliday A N. 2000. Terrestrial accretion rates and the origin of the Moon. Earth Planet Sci Lett, 176: 17–30

    Article  Google Scholar 

  • Hamilton C W, Beggan C D, Still S, Beuthe M, Lopes R M C, Williams D A, Radebaugh J, Wright W. 2013. Spatial distribution of volcanoes on Io: Implications for tidal heating and magma ascent. Earth Planet Sci Lett, 361: 272–286

    Article  Google Scholar 

  • Hamilton C W, Fagents S A, Thordarson T. 2011. Lava-ground ice interactions in Elysium Planitia, Mars: Geomorphological and geospatial analysis of the Tartarus Colles cone groups. J Geophys Res-Planets, 116: E03004

    Article  Google Scholar 

  • Hansen C J, Shemansky D E, Esposito L W, Stewart A I F, Lewis B R, Colwell J E, Hendrix A R, West R A, Waite Jr. J H, Teolis B, Magee B A. 2011. The composition and structure of the Enceladus plume. Geophys Res Lett, 38: L11202

    Article  Google Scholar 

  • Head J W, Crumpler L S, Aubele J C, Guest J E, Saunders R S. 1992. Venus volcanism: Classification of volcanic features and structures, associations, and global distribution from Magellan data. J Geophys Res-Planets, 97: 13153–13197

    Article  Google Scholar 

  • Head J W, Wilson L. 1998. Tharsis Montes as composite volcanoes? 1. The role of explosive volcanism in edifice construction and implications for the volatile contents of edifice-forming magmas. Houston: 29th Lunar and Planetary Science Conference. Abstract #1127

  • Head J W, Wilson L. 2017. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations). Icarus, 283: 176–223

    Article  Google Scholar 

  • Hesse M A, Castillo-Rogez J C. 2019. Thermal evolution of the impact-induced cryomagma chamber beneath Occator crater on Ceres. Geophys Res Lett, 46: 1213–1221

    Article  Google Scholar 

  • Hiesinger H, Head J W, Wolf U, Jaumann R, Neukum G. 2011. Ages and stratigraphy of lunar mare basalts: A synthesis. In: Ambrose W A, Williams D A, eds. Recent Advances and Current Research Issues in Lunar Stratigraphy. Special Paper of the Geological Society of America. 477: 1–51

  • Horvath D G, Moitra P, Hamilton C W, Craddock R A, Andrews-Hanna J C. 2021. Evidence for geologically recent explosive volcanism in Elysium Planitia, Mars. Icarus, 365: 114499

    Article  Google Scholar 

  • Hu S, He H, Ji J, Lin Y, Hui H, Anand M, Tartèse R, Yan Y, Hao J, Li R, Gu L, Guo Q, He H, Ouyang Z. 2021. A dry lunar mantle reservoir for young mare basalts of Chang’e-5. Nature, 600: 49–53

    Article  Google Scholar 

  • Huang J, Xiao L. 2014. Knobby terrain on ancient volcanoes as an indication of dominant early explosive volcanism on Mars. Geophys Res Lett, 41: 7019–7024

    Article  Google Scholar 

  • Ivanov M A, Crumpler L S, Aubele J C, Head J W. 2015. Volcanism on Venus. In: Sigurdsson H, ed. The Encyclopedia of Volcanoes. New York: Academic Press. 729–746

    Chapter  Google Scholar 

  • Ivanov M A, Hiesinger H, Erkeling G, Reiss D. 2014. Mud volcanism and morphology of impact craters in Utopia Planitia on Mars: Evidence for the ancient ocean. Icarus, 228: 121–140

    Article  Google Scholar 

  • Johnson T V, Veeder G J, Matson D L, Brown R H, Nelson R M, Morrison D. 1988. Io: Evidence for silicate volcanism in 1986. Science, 242: 1280–1283

    Article  Google Scholar 

  • Jolliff B L, Gillis J J, Haskin L A, Korotev R L, Wieczorek M A. 2000. Major lunar crustal terranes: Surface expressions and crust-mantle origins. J Geophys Res, 105: 4197–4216

    Article  Google Scholar 

  • Jozwiak L M, Head J W, Wilson L. 2018. Explosive volcanism on Mercury: Analysis of vent and deposit morphology and modes of eruption. Icarus, 302: 191–212

    Article  Google Scholar 

  • Kamata S, Nimmo F, Sekine Y, Kuramoto K, Noguchi N, Kimura J, Tani A. 2019. Pluto’s ocean is capped and insulated by gas hydrates. Nat Geosci, 12: 407–410

    Article  Google Scholar 

  • Kargel J S. 1991. Brine volcanism and the interior structures of asteroids and icy satellites. Icarus, 94: 368–390

    Article  Google Scholar 

  • Kargel J S. 1995. Cryovolcanism on the icy satellites. In: Chahine M T, A’Hearn M F, Rahe J, eds. Comparative Planetology with an Earth Perspective. Dordrecht: Springer. 101–113

    Chapter  Google Scholar 

  • Kargel J S, Pozio S. 1996. The volcanic and tectonic history of Enceladus. Icarus, 119: 385–404

    Article  Google Scholar 

  • Keane J T, de Kleer K, Rathbun J, Ahern A, Radebaugh J. 2018. Comprehensive spherical harmonic analysis of the distribution of Io’s volcanoes, mountains, heat flow, and other geologic phenomena. Washington DC: 2018 AGU Fall Meeting. P53C-2983

  • Kerber L, Head J W, Solomon S C, Murchie S L, Blewett D T, Wilson L. 2009. Explosive volcanic eruptions on Mercury: Eruption conditions, magma volatile content, and implications for interior volatile abundances. Earth Planet Sci Lett, 285: 263–271

    Article  Google Scholar 

  • Keszthelyi L, McEwen A S, Phillips C B, Milazzo M, Geissler P, Turtle E P, Radebaugh J, Williams D A, Simonelli D P, Breneman H H, Klaasen K P, Levanas G, Denk T. 2001. Imaging of volcanic activity on Jupiter’s moon Io by Galileo during the Galileo Europa Mission and the Galileo Millennium Mission. J Geophys Res-Planets, 106: 33025–33052

    Article  Google Scholar 

  • Khurana K K, Kivelson M G, Stevenson D J, Schubert G, Russell C T, Walker R J, Polanskey C. 1998. Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature, 395: 777–780

    Article  Google Scholar 

  • Kivelson M G, Khurana K K, Russell C T, Volwerk M, Walker R J, Zimmer C. 2000. Galileo magnetometer measurements: A stronger case for a subsurface ocean at Europa. Science, 289: 1340–1343

    Article  Google Scholar 

  • Kleine T, Münker C, Mezger K, Palme H. 2002. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry. Nature, 418: 952–955

    Article  Google Scholar 

  • Laneuville M, Wieczorek M A, Breuer D, Tosi N. 2013. Asymmetric thermal evolution of the Moon. J Geophys Res-Planets, 118: 1435–1452

    Article  Google Scholar 

  • Laver C, de Pater I. 2009. The global distribution of sulfur dioxide ice on Io, observed with OSIRIS on the W.M. Keck telescope. Icarus, 201: 172–181

    Article  Google Scholar 

  • Li Q L, Zhou Q, Liu Y, Xiao Z, Lin Y, Li J H, Ma H X, Tang G Q, Guo S, Tang X, Yuan J Y, Li J, Wu F Y, Ouyang Z, Li C, Li X H. 2021. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts. Nature, 600: 54–58

    Article  Google Scholar 

  • Linde A T, Sacks I S. 1998. Triggering of volcanic eruptions. Nature, 395: 888–890

    Article  Google Scholar 

  • Liu S, Zhou Q, Li Q, Hu S, Yang W. 2021. Chang’e-5 samples reveal two-billion-year-old volcanic activity on the Moon and its source characteristics. Sci China Earth Sci, 64: 2083–2089

    Article  Google Scholar 

  • Lucchitta B K, Soderblom L A. 1982. The geology of Europa. In: Satellites of Jupiter. Tucson: University of Arizona Press. 521–555

    Google Scholar 

  • Lunine J I, Stevenson D J. 1985. Thermodynamics of clathrate hydrate at low and high pressures with application to the outer solar system. Astrophys J Suppl Ser, 58: 493–531

    Article  Google Scholar 

  • Mancinelli P, Minelli F, Pauselli C, Federico C. 2016. Geology of the Raditladi quadrangle, Mercury (H04). J Maps, 12: 190–202

    Article  Google Scholar 

  • Marchi S, Chapman C R, Fassett C I, Head J W, Bottke W F, Strom R G. 2013. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature, 499: 59–61

    Article  Google Scholar 

  • Marcq E, Bertaux J L, Montmessin F, Belyaev D. 2013. Variations of sulphur dioxide at the cloud top of Venus’s dynamic atmosphere. Nat Geosci, 6: 25–28

    Article  Google Scholar 

  • McCoy T J, Peplowski P N, McCubbin F M, Weider S Z. 2018. The geochemical and mineralogical diversity of Mercury. In: Solomon S C, Nittler L R, Anderson B J, eds. Mercury: The View After MESSENGER. Cambridge: Cambridge Planetary Science. 176–190

    Chapter  Google Scholar 

  • McEwen A S, Malin M C, Carr M H, Hartmann W K. 1999. Voluminous volcanism on early Mars revealed in Valles Marineris. Nature, 397: 584–586

    Article  Google Scholar 

  • McEwen A S, Keszthelyi L, Spencer J R, Schubert G, Matson D L, Lopes-Gautier R, Klaasen K P, Johnson T V, Head J W, Geissler P, Fagents S, Davies A G, Carr M H, Breneman H H, Belton M J S. 1998. High-temperature silicate volcanism on Jupiter’s Moon Io. Science, 281: 87–90

    Article  Google Scholar 

  • McKinnon W B, Stern S A, Weaver H A, Nimmo F, Bierson C J, Grundy W M, Cook J C, Cruikshank D P, Parker A H, Moore J M, Spencer J R, Young L A, Olkin C B, Ennico Smith K, New Horizons Geology G. 2017. Origin of the Pluto-Charon system: Constraints from the New Horizons flyby. Icarus, 287: 2–11

    Article  Google Scholar 

  • McLennan S M, Anderson R B, Bell III J F, Bridges J C, Calef III F, Campbell J L, Clark B C, Clegg S, Conrad P, Cousin A, et al., a total of 448 authors. 2014. Elemental geochemistry of sedimentary rocks at Yellowknife Bay, Gale crater, Mars. Science, 343: 1244734

  • Michalski J R, Bleacher J E. 2013. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars. Nature, 502: 47–52

    Article  Google Scholar 

  • Milazzo M P, Keszthelyi L P, Radebaugh J, Davies A G, Turtle E P, Geissler P, Klaasen K P, Rathbun J A, McEwen A S. 2005. Volcanic activity at Tvashtar Catena, Io. Icarus, 179: 235–251

    Article  Google Scholar 

  • Mitchell R N. 2021. Chang’E-5 reveals the Moon’s secrets to a longer life. Innovation, 2: 100177

    Google Scholar 

  • Moore J M, McKinnon W B, Spencer J R, Howard A D, Schenk P M, Beyer R A, Nimmo F, Singer K N, Umurhan O M, White O L, et al., a total of 154 authors. 2016. The geology of Pluto and Charon through the eyes of New Horizons. Science, 351: 1284–1293

    Article  Google Scholar 

  • Murchie S L, Klima R L, Izenberg N R, Domingue D L, Blewett D T, Helbert J. 2018. Spectral reflectance Constraints on the Composition and Evolution of Mercury’s Surface. In: Solomon S C, Nittler L R, Anderson B J, eds. Mercury: The View After MESSENGER. Cambridge: Cambridge Planetary Science. 191–216

    Chapter  Google Scholar 

  • Nimmo F, McKenzie D. 1998. Volcanism and tectonics on Venus. Annu Rev Earth Planet Sci, 26: 23–51

    Article  Google Scholar 

  • Ody A, Poulet F, Langevin Y, Bibring J P, Bellucci G, Altieri F, Gondet B, Vincendon M, Carter J, Manaud N. 2012. Global maps of anhydrous minerals at the surface of Mars from OMEGA/Mex. J Geophys Res, 117: E00J14

    Google Scholar 

  • Padovan S, Tosi N, Plesa A C, Ruedas T. 2017. Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures. Nat Commun, 8: 1945

    Article  Google Scholar 

  • Peplowski P N, Klima R L, Lawrence D J, Ernst C M, Denevi B W, Frank E A, Goldsten J O, Murchie S L, Nittler L R, Solomon S C. 2016. Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nat Geosci, 9: 273–276

    Article  Google Scholar 

  • Plescia J B. 2004. Morphometric properties of Martian volcanoes. J Geophys Res, 109: E03003

    Google Scholar 

  • Qi C, Stern L A, Pathare A, Durham W B, Goldsby D L. 2018. Inhibition of grain boundary sliding in fine-grained ice by intergranular particles: Implications for planetary ice masses. Geophys Res Lett, 45: 12,757–12,765

    Article  Google Scholar 

  • Qian Y, She Z, He Q, Xiao L, Wang Z, Head J W, Sun L, Wang Y, Wu B, Wu X, Luo B, Cao K, Li Y, Dong M, Song W, Pan F, Michalski J, Ye B, Zhao J, Zhao S, Huang J, Zhao J, Wang J, Zong K, Hu Z. 2023. Mineralogy and chronology of the young mare volcanism in the Procellarum-KREEP-Terrane. Nat Astron, 7: 287–297

    Article  Google Scholar 

  • Qian Y, Xiao L, Wang Q, Head J W, Yang R, Kang Y, van der Bogert C H, Hiesinger H, Lai X, Wang G, Pang Y, Zhang N, Yuan Y, He Q, Huang J, Zhao J, Wang J, Zhao S. 2021. China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet Sci Lett, 561: 116855

    Article  Google Scholar 

  • Qiao L, Chen J, Ling Z. 2021. Volcanic landforms on the Moon (in Chinese). Acta Geol Sin, 95: 2678–2691

    Google Scholar 

  • Qiao L, Head J W, Ling Z, Wilson L. 2020. Lunar irregular mare patches: Classification, characteristics, geologic settings, updated catalog, origin, and outstanding questions. J Geophys Res-Planets, 125: e06362

    Article  Google Scholar 

  • Qiao L, Head J, Wilson L, Xiao L, Kreslavsky M, Dufek J. 2017. Ina pit crater on the Moon: Extrusion of waning-stage lava lake magmatic foam results in extremely young crater retention ages. Geology, 45: 455–458

    Article  Google Scholar 

  • Quick L C, Buczkowski D L, Ruesch O, Scully J E C, Castillo-Rogez J, Raymond C A, Schenk P M, Sizemore H G, Sykes M V. 2019. A possible brine reservoir beneath Occator crater: Thermal and compositional evolution and formation of the Cerealia dome and Vinalia Fa-culae. Icarus, 320: 119–135

    Article  Google Scholar 

  • Quick L C, Glaze L S, Baloga S M. 2017. Cryovolcanic emplacement of domes on Europa. Icarus, 284: 477–488

    Article  Google Scholar 

  • Raymond C A, Ermakov A I, Castillo-Rogez J C, Marchi S, Johnson B C, Hesse M A, Scully J E C, Buczkowski D L, Sizemore H G, Schenk P M, Nathues A, Park R S, Prettyman T H, Quick L C, Keane J T, Rayman M D, Russell C T. 2020. Impact-driven mobilization of deep crustal brines on dwarf planet Ceres. Nat Astron, 4: 741–747

    Article  Google Scholar 

  • Robbins S J, di Achille G, Hynek B M. 2011. The volcanic history of Mars: High-resolution crater-based studies of the calderas of 20 volcanoes. Icarus, 211: 1179–1203

    Article  Google Scholar 

  • Rogers A D, Christensen P R. 2007. Surface mineralogy of Martian low-albedo regions from MGS-TES data: Implications for upper crustal evolution and surface alteration. J Geophys Res-Planets, 112: E01003

    Article  Google Scholar 

  • Rogers A D, Nazarian A H. 2013. Evidence for Noachian flood volcanism in Noachis Terra, Mars, and the possible role of Hellas impact basin tectonics. J Geophys Res-Planets, 118: 1094–1113

    Article  Google Scholar 

  • Roth L, Saur J, Retherford K D, Strobel D F, Feldman P D, McGrath M A, Nimmo F. 2014. Transient water vapor at Europa’s south pole. Science, 343: 171–174

    Article  Google Scholar 

  • Ruesch O, Genova A, Neumann W, Quick L C, Castillo-Rogez J C, Raymond C A, Russell C T, Zuber M T. 2019. Slurry extrusion on Ceres from a convective mud-bearing mantle. Nat Geosci, 12: 505–509

    Article  Google Scholar 

  • Ruesch O, Platz T, Schenk P, McFadden L A, Castillo-Rogez J C, Quick L C, Byrne S, Preusker F, O’Brien D P, Schmedemann N, Williams D A, Li J Y, Bland M T, Hiesinger H, Kneissl T, Neesemann A, Schaefer M, Pasckert J H, Schmidt B E, Buczkowski D L, Sykes M V, Nathues A, Roatsch T, Hoffmann M, Raymond C A, Russell C T. 2016. Cryo-volcanism on ceres. Science, 353: aaf4286

    Article  Google Scholar 

  • Salvatore M R, Christensen P R. 2014. On the origin of the Vastitas Borealis formation in Chryse and Acidalia Planitiae, Mars. J Geophys Res-Planets, 119: 2437–2456

    Article  Google Scholar 

  • Schenk P M, McKinnon W B, Gwynn D, Moore J M. 2001. Flooding of Ganymede’s bright terrains by low-viscosity water-ice lavas. Nature, 410: 57–60

    Article  Google Scholar 

  • Sehlke A, Whittington A G. 2015. Rheology oflava flows on Mercury: An analog experimental study. J Geophys Res-Planets, 120: 1924–1955

    Article  Google Scholar 

  • Singer K N, White O L, Schmitt B, Rader E L, Protopapa S, Grundy W M, Cruikshank D P, Bertrand T, Schenk P M, McKinnon W B, Stern S A, Dhingra R D, Runyon K D, Beyer R A, Bray V J, Ore C D, Spencer J R, Moore J M, Nimmo F, Keane J T, Young L A, Olkin C B, Lauer T R, Weaver H A, Ennico-Smith K. 2022. Large-scale cryovolcanic resurfacing on Pluto. Nat Commun, 13: 1542

    Article  Google Scholar 

  • Smrekar S E, Stofan E R, Mueller N, Treiman A, Elkins-Tanton L, Helbert J, Piccioni G, Drossart P. 2010. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science, 328: 605–608

    Article  Google Scholar 

  • Solomon S C, Ahrens T J, Reynolds R T, Cassen P M, Sleep N H, Minerar J W, Turcotte D L. 1981. Thermal histories of the terrerstrail planets. In: Basaltic Volcanism on the Therrestrial Planets. Basaltic Volcanism Study Project. New York: Pergamon Press. 1130–1237

    Google Scholar 

  • Sori M M, Byrne S, Bland M T, Bramson A M, Ermakov A I, Hamilton C W, Otto K A, Ruesch O, Russell C T. 2017. The vanishing cryo-volcanoes of Ceres. Geophys Res Lett, 44: 1243–1250

    Article  Google Scholar 

  • Sori M M, Sizemore H G, Byrne S, Bramson A M, Bland M T, Stein N T, Russell C T. 2018. Cryovolcanic rates on Ceres revealed by topography. Nat Astron, 2: 946–950

    Article  Google Scholar 

  • Sparks W B, Hand K P, McGrath M A, Bergeron E, Cracraft M, Deustua S E. 2016. Probing for evidence of plumes on europa with HST/STIS. Astrophys J, 829: 121

    Article  Google Scholar 

  • Sparks W B, Schmidt B E, McGrath M A, Hand K P, Spencer J R, Cracraft M, Deustua S E. 2017. Active cryovolcanism on Europa? Astrophys J, 839: L18

    Article  Google Scholar 

  • Spudis P D, Guest J E. 1988. Stratigraphy and geologic history of Mercury. In: Vilas F, Chapman C R, Matthews M S, eds. Mercury. Tucson: University of Arizona Press. 118–164

    Google Scholar 

  • Squyres S W, Reynolds R T, Cassen P M, Peale S J. 1983. Liquid water and active resurfacing on Europa. Nature, 301: 225–226

    Article  Google Scholar 

  • Stockstill-Cahill K R, McCoy T J, Nittler L R, Weider S Z, Hauck Steven A. II. 2012. Magnesium-rich crustal compositions on Mercury: Implications for magmatism from petrologic modeling. J Geophys Res, 117: E00L15

    Google Scholar 

  • Stofan E R, Sharpton V L, Schubert G, Baer G, Bindschadler D L, Janes D M, Squyres S W. 1992. Global distribution and characteristics of cor-onae and related features on Venus: Implications for origin and relation to mantle processes. J Geophys Res-Planets, 97: 13347–13378

    Article  Google Scholar 

  • Strom R G, Banks M E, Chapman C R, Fassett C I, Forde J A, Head III J W, Merline W J, Prockter L M, Solomon S C. 2011. Mercury crater statistics from MESSENGER flybys: Implications for stratigraphy and resurfacing history. Planet Space Sci, 59: 1960–1967

    Article  Google Scholar 

  • Strom R G, Schaber G G, Dawsow D D. 1994. The global resurfacing of Venus. J Geophys Res-Planets, 99: 10899–10926

    Article  Google Scholar 

  • Tanaka K L, Skinner J A, Dohm J M, Irwin III R P, Kolb E J, Fortezzo C M, Platz T, Hare T M. 2014. Geologic Map of Mars. Flagstaff: United States Geological Survey

    Google Scholar 

  • Tartèse R, Anand M, Gattacceca J, Joy K H, Mortimer J I, Pernet-Fisher J F, Russell S, Snape J F, Weiss B P. 2019. Constraining the evolutionary history of the Moon and the Inner Solar System: A case for new returned lunar samples. Space Sci Rev, 215: 54

    Article  Google Scholar 

  • Terada K, Anand M, Sokol A K, Bischoff A, Sano Y. 2007. Cryptomare magmatism 4.35 Gyr ago recorded in lunar meteorite Kalahari 009. Nature, 450: 849–852

    Article  Google Scholar 

  • Thomas R J, Rothery D A, Conway S J, Anand M. 2014. Long-lived explosive volcanism on Mercury. Geophys Res Lett, 41: 6084–6092

    Article  Google Scholar 

  • Thomas R J, Rothery D A, Conway S J, Anand M. 2015. Explosive volcanism in complex impact craters on Mercury and the Moon: Influence of tectonic regime on depth of magmatic intrusion. Earth Planet Sci Lett, 431: 164–172

    Article  Google Scholar 

  • Tian H C, Wang H, Chen Y, Yang W, Zhou Q, Zhang C, Lin H L, Huang C, Wu S T, Jia L H, Xu L, Zhang D, Li X G, Chang R, Yang Y H, Xie L W, Zhang D P, Zhang G L, Yang S H, Wu F Y. 2021. Non-KREEP origin for Chang’e-5 basalts in the Procellarum KREEP Terrane. Nature, 600: 59–63

    Article  Google Scholar 

  • Trask N J, Guest J E. 1975. Preliminary geologic terrain map of Mercury. J Geophys Res, 80: 2461–2477

    Article  Google Scholar 

  • Travis B J, Bland P A, Feldman W C, Sykes M V. 2018. Hydrothermal dynamics in a CM-based model of Ceres. Meteorit Planet Sci, 53: 2008–2032

    Article  Google Scholar 

  • Tyler R H, Henning W G, Hamilton C W. 2015. Tidal heating in a magma ocean within Jupiter’s moon Io. Astrophys J Suppl Ser, 218: 22

    Article  Google Scholar 

  • Vander Kaaden K E, McCubbin F M, Nittler L R, Peplowski P N, Weider S Z, Frank E A, McCoy T J. 2017. Geochemistry, mineralogy, and petrology of boninitic and komatiitic rocks on the mercurian surface: Insights into the mercurian mantle. Icarus, 285: 155–168

    Article  Google Scholar 

  • Vaniman D T, Bish D L, Ming D W, Bristow T F, Morris R V, Blake D F, Chipera S J, Morrison S M, Treiman A H, Rampe E B, Rice M, Achilles C N, Grotzinger J P, McLennan S M, Williams J, Bell III J F, Newsom H E, Downs R T, Maurice S, Sarrazin P, Yen A S, Morookian J M, Farmer J D, Stack K, Milliken R E, Ehlmann B L, Sumner D Y, Berger G, Crisp J A, Hurowitz J A, Anderson R, Des Marais D J, Stolper E M, Edgett K S, Gupta S, Spanovich N, the MSL Science Team. 2014. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars. Science, 343: 1243480

    Article  Google Scholar 

  • Veeder G J, Davies A G, Matson D L, Johnson T V, Williams D A, Radebaugh J. 2012. Io: Volcanic thermal sources and global heat flow. Icarus, 219: 701–722

    Article  Google Scholar 

  • Veeder G J, Davies A G, Matson D L, Johnson T V, Williams D A, Radebaugh J. 2015. Io: Heat flow from small volcanic features. Icarus, 245: 379–410

    Article  Google Scholar 

  • Veeder G J, Matson D L, Johnson T V, Blaney D L, Goguen J D. 1994. Io’s heat flow from infrared radiometry: 1983–1993. J Geophys Res, 99: 17095–17162

    Article  Google Scholar 

  • Waite J H, Glein C R, Perryman R S, Teolis B D, Magee B A, Miller G, Grimes J, Perry M E, Miller K E, Bouquet A, Lunine J I, Brockwell T, Bolton S J. 2017. Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science, 356: 155–159

    Article  Google Scholar 

  • Wang Y C, Xiao Z Y, Chang Y R, Xu R, Cui J. 2021. Short-term and global-wide effusive volcanism on Mercury around 3.7 Ga. Geophys Res Lett, 48: e2021GL094503

    Article  Google Scholar 

  • Warren P H. 1985. The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci, 13: 201–240

    Article  Google Scholar 

  • Weider S Z, Nittler L R, Murchie S L, Peplowski P N, McCoy T J, Kerber L, Klimczak C, Ernst C M, Goudge T A, Starr R D, Izenberg N R, Klima R L, Solomon S C. 2016. Evidence from MESSENGER for sulfur- and carbon-driven explosive volcanism on Mercury. Geophys Res Lett, 43: 3653–3661

    Article  Google Scholar 

  • Werner S C. 2009. The global martian volcanic evolutionary history. Icarus, 201: 44–68

    Article  Google Scholar 

  • Whitten J L, Head J W, Denevi B W, Solomon S C. 2014. Intercrater plains on Mercury: Insights into unit definition, characterization, and origin from MESSENGER datasets. Icarus, 241: 97–113

    Article  Google Scholar 

  • Whitten J L, Head J W. 2015a. Lunar cryptomaria: Physical characteristics, distribution, and implications for ancient volcanism. Icarus, 247: 150–171

    Article  Google Scholar 

  • Whitten J L, Head J W. 2015b. Rembrandt impact basin: Distinguishing between volcanic and impact-produced plains on Mercury. Icarus, 258: 350–365

    Article  Google Scholar 

  • Wilson L. 2009. Volcanism in the Solar System. Nat Geosci, 2: 389–397

    Article  Google Scholar 

  • Wilson L, Head III J W. 1981. Ascent and eruption of basaltic magma on the Earth and Moon. J Geophys Res-Solid Earth, 86: 2971–3001

    Article  Google Scholar 

  • Wilson L, Head J W, Zhang F. 2019. A theoretical model for the formation of Ring Moat Dome Structures: Products of second boiling in lunar basaltic lava flows. J Volcanol Geotherm Res, 374: 160–180

    Article  Google Scholar 

  • Wray J J, Hansen S T, Dufek J, Swayze G A, Murchie S L, Seelos F P, Skok J R, Irwin III R P, Ghiorso M S. 2013. Prolonged magmatic activity on Mars inferred from the detection of felsic rocks. Nat Geosci, 6: 1013–1017

    Article  Google Scholar 

  • Xiao L, Greeley R. 2008. Characteristics of volcanism and evolution of Mars (in Chinese). Bull Mineral Petrol Geochem, 27: 60–61

    Google Scholar 

  • Xiao L, Huang J, Christensen P R, Greeley R, Williams D A, Zhao J, He Q. 2012. Ancient volcanism and its implication for thermal evolution of Mars. Earth Planet Sci Lett, 323–324: 9–18

    Article  Google Scholar 

  • Xiao L. 2013. Planetary Geology (in Chinese). Beijing: Geology Press. 495

    Google Scholar 

  • Xiao Z Y, Xu R, Wang Y C, Chang Y R, Xu R, Cui J. 2021. Recent dark pyroclastic deposits on Mercury. Geophys Res Lett, 48: e92532

    Article  Google Scholar 

  • Ye B, Qian Y, Xiao L, Michalski J R, Li Y, Wu B, Qiao L. 2021. Geo-morphologic exploration targets at the Zhurong landing site in the southern Utopia Planitia of Mars. Earth Planet Sci Lett, 576: 117199

    Article  Google Scholar 

  • Yin Q, Jacobsen S B, Yamashita K, Blichert-Toft J, Télouk P, Albarède F. 2002. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature, 418: 949–952

    Article  Google Scholar 

  • Zhang F, Head J W, Wöhler C, Basilevsky A T, Wilson L, Xie M, Bugiolacchi R, Wilhelm T, Althoff S, Zou Y L. 2021. The Lunar Mare Ring-Moat Dome Structure (RMDS) age conundrum: Contemporaneous with imbrian-aged host lava flows or emplaced in the Copernican? J Geophys Res-Planets, 126: e06880

    Article  Google Scholar 

  • Zhang F, Head J W, Wöhler C, Bugiolacchi R, Wilson L, Basilevsky A T, Grumpe A, Zou Y L. 2020. Ring-Moat Dome Structures (RMDSs) in the Lunar Maria: Statistical, compositional, and morphological characterization and assessment of theories of origin. J Geophys Res-Planets, 125: e05967

    Article  Google Scholar 

  • Zhang F, Head J W, Basilevsky A T, Bugiolacchi R, Komatsu G, Wilson L, Fa W, Zhu M H. 2017. Newly discovered ring-moat dome structures in the Lunar Maria: Possible origins and implications. Geophys Res Lett, 44: 9216–9224

    Article  Google Scholar 

  • Zhao J, Xiao Z, Huang J, Head J W, Wang J, Shi Y, Wu B, Wang L. 2021. Geological characteristics and targets of high scientific interest in the Zhurong landing region on Mars. Geophys Res Lett, 48: e94903

    Article  Google Scholar 

  • Zhou C, Jia Y, Liu J, Li H, Fan Y, Zhang Z, Liu Y, Jiang Y, Zhou B, He Z, Yang J, Hu Y, Liu Z, Qin L, Lv B, Fu Z, Yan J, Wang C, Zou Y. 2022. Scientific objectives and payloads of the lunar sample return mission— Chang’E-5. Adv Space Res, 69: 823–836

    Article  Google Scholar 

Download references

Acknowledgements

We thank the constructive suggestions from Prof. Hejiu HUI and the three anonymous reviewers. This study was supported by the National Natural Science Foundation of China (Grant Nos. 42241111, 41773061, 41773063).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, L., Huang, J., Xiao, Z. et al. Volcanism in the Solar System. Sci. China Earth Sci. 66, 2419–2440 (2023). https://doi.org/10.1007/s11430-022-1085-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-022-1085-y

Keywords

Navigation