Skip to main content

Advertisement

Log in

Single Degenerate Models for Type Ia Supernovae: Progenitor’s Evolution and Nucleosynthesis Yields

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

We review how the single degenerate models for Type Ia supernovae (SNe Ia) works. In the binary star system of a white dwarf (WD) and its non-degenerate companion star, the WD accretes either hydrogen-rich matter or helium and undergoes hydrogen and helium shell-burning. We summarize how the stability and non-linear behavior of such shell-burning depend on the accretion rate and the WD mass and how the WD blows strong wind. We identify the following evolutionary routes for the accreting WD to trigger a thermonuclear explosion. Typically, the accretion rate is quite high in the early stage and gradually decreases as a result of mass transfer. With decreasing rate, the WD evolves as follows: (1) At a rapid accretion phase, the WD increase its mass by stable H burning and blows a strong wind to keep its moderate radius. The wind is strong enough to strip a part of the companion star’s envelope to control the accretion rate and forms circumstellar matter (CSM). If the WD explodes within CSM, it is observed as an “SN Ia-CSM”. (X-rays emitted by the WD are absorbed by CSM.) (2) If the WD continues to accrete at a lower rate, the wind stops and an SN Ia is triggered under steady-stable H shell-burning, which is observed as a super-soft X-ray source: “SN Ia-SSXS”. (3) If the accretion continues at a still lower rate, H shell-burning becomes unstable and many flashes recur. The WD undergoes recurrent nova (RN) whose mass ejection is smaller than the accreted matter. Then the WD evolves to an “SN Ia-RN”. (4) If the companion is a He star (or a He WD), the accretion of He can trigger He and C double detonations at the sub-Chandrasekhar mass or the WD grows to the Chandrasekhar mass while producing a He-wind: “SN Ia-He CSM”. (5) If the accreting WD rotates quite rapidly, the WD mass can exceed the Chandrasekhar mass of the spherical WD, which delays the trigger of an SN Ia. After angular momentum is lost from the WD, the (super-Chandra) WD contracts to become a delayed SN Ia. The companion star has become a He WD and CSM has disappeared: “SN Ia-He WD”. We update nucleosynthesis yields of the carbon deflagration model W7, delayed detonation model WDD2, and the sub-Chandrasekhar mass model to provide some constraints on the yields (such as Mn) from the comparison with the observations. We note the important metallicity effects on 58Ni and 55Mn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • D. Arnett, A possible model of supernovae: detonation of 12C. Astrophys. Space Sci. 5, 180 (1969)

    Article  ADS  Google Scholar 

  • D. Arnett, Supernovae and Nucleosynthesis (Princeton University Press, Princeton, 1996)

    Google Scholar 

  • O.G. Benvenuto, J.A. Panei, K. Nomoto, H. Kitamura, I. Hachisu, Final evolution and delayed explosions of spinning white dwarfs in single degenerate models for Type Ia supernovae. Astrophys. J. Lett. 809, L6 (2015)

    Article  ADS  Google Scholar 

  • F. Brachwitz, D.J. Dean, W.R. Hix et al., The role of electron captures in Chandrasekhar-mass models for Type Ia Supernovae. Astrophys. J. 536, 934 (2000)

    Article  ADS  Google Scholar 

  • B. Dilday, D.A. Howell, S.B. Cenko et al., PTF 11kx: a Type Ia supernova with a symbiotic nova progenitor. Science 337, 942 (2012)

    Article  ADS  Google Scholar 

  • R. Di Stefano, R. Voss, J.S.W. Claeys, Spin-up/spin-down models for Type Ia supernovae. Astrophys. J. Lett. 738, L1 (2011)

    Article  ADS  Google Scholar 

  • R.J. Foley, J.D. Simon, C.R. Burns et al., Linking Type Ia supernova progenitors and their resulting explosions. Astrophys. J. 752, 101 (2012)

    Article  ADS  Google Scholar 

  • M.-Y. Fujimoto, D. Sugimoto, Helium shell flashes and evolution of accreting white dwarfs. Astrophys. J. 257, 291 (1982)

    Article  ADS  Google Scholar 

  • G. Fuller, W. Fowler, M. Newman, Stellar weak interaction rates for intermediate mass nuclei. III—Rate tables for the free nucleons and nuclei with \(A= 21\) to \(A = 60\). Astrophys. J. Suppl. Ser. 48, 279 (1982)

    Article  ADS  Google Scholar 

  • I. Hachisu, M. Kato, K. Nomoto, A new model for progenitor systems of Type Ia supernovae. Astrophys. J. Lett. 470, 97 (1996)

    Article  ADS  Google Scholar 

  • I. Hachisu, M. Kato, K. Nomoto, H. Umeda, A new evolutionary path to Type Ia Supernovae: a helium-rich supersoft X-ray source channel. Astrophys. J. 519, 314 (1999a)

    Article  ADS  Google Scholar 

  • I. Hachisu, M. Kato, K. Nomoto, A wide symbiotic channel to Type Ia Supernovae. Astrophys. J. 522, 487 (1999b)

    Article  ADS  Google Scholar 

  • I. Hachisu, M. Kato, K. Nomoto, Young and massive binary progenitors of Type Ia supernovae and their circumstellar matter. Astrophys. J. 679, 1390–1404 (2008a)

    Article  ADS  Google Scholar 

  • I. Hachisu, M. Kato, K. Nomoto, The delay-time distribution of Type Ia supernovae and the single-degenerate model. Astrophys. J. 683, L27 (2008b)

    Article  Google Scholar 

  • I. Hachisu, M. Kato, K. Nomoto, Final fates of rotating white dwarfs and their companions in the single degenerate model of Type Ia supernovae. Astrophys. J. Lett. 756, L4 (2012a)

    Article  ADS  Google Scholar 

  • I. Hachisu, M. Kato, H. Saio, K. Nomoto, A single degenerate progenitor model for Type Ia supernovae highly exceeding the Chandrasekhar mass limit. Astrophys. J. 744, 69 (2012b)

    Article  ADS  Google Scholar 

  • M. Hamuy, M.M. Phillips, N.B. Suntzeff et al., An asymptotic-giant-branch star in the progenitor system of a Type Ia supernova. Nature 424, 651 (2003)

    Article  ADS  Google Scholar 

  • Z. Han, Ph. Podsiadlowski, The single-degenerate channel for the progenitors of Type Ia supernovae. Mon. Not. R. Astron. Soc. 350, 1301 (2004)

    Article  ADS  Google Scholar 

  • M. Hashimoto, K. Nomoto, K. Arai, K. Kaminishi, The (14N) (\(e ^{-}\), \(\nu \)) (14C) (\(\alpha \), \(\gamma \)) (18O) reaction and helium flashes in accreting helium white dwarfs. Astrophys. J. 307, 687 (1986)

    Article  ADS  Google Scholar 

  • W. Hillebrandt, J.C. Niemeyer, Type Ia supernova explosion models. Annu. Rev. Astron. Astrophys. 38, 191 (2000)

    Article  ADS  Google Scholar 

  • I. Iben Jr., A.V. Tutukov, Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M not greater than about 9 solar masses). Astrophys. J. Suppl. Ser. 54, 335 (1984)

    Article  ADS  Google Scholar 

  • I. Iben Jr., K. Nomoto, A. Tornambe, A.V. Tutukov, On interacting helium star-white dwarf pairs as supernova precursors. Astrophys. J. 317, 717 (1987)

    Article  ADS  Google Scholar 

  • M. Ilkov, N. Soker, Type Ia supernovae from very long delayed explosion of core-white dwarf merger. Mon. Not. R. Astron. Soc. 419, 1695 (2012)

    Article  ADS  Google Scholar 

  • K. Iwamoto, F. Brachwitz, K. Nomoto et al., Nucleosynthesis in Chandrasekhar mass models for Type Ia supernovae and constraints on progenitor systems and burning-front propagation. Astrophys. J. Suppl. Ser. 125, 439 (1999)

    Article  ADS  Google Scholar 

  • S. Justham, Single-degenerate Type Ia supernovae without hydrogen contamination. Astrophys. J. Lett. 730, L34 (2011)

    Article  ADS  Google Scholar 

  • Y. Kamiya, M. Tanaka, K. Nomoto et al., Super-Chandrasekhar-mass light curve models for the highly luminous Type Ia supernova 2009dc. Astrophys. J. 756, 191 (2012)

    Article  ADS  Google Scholar 

  • M. Kato, H. Saio, I. Hachisu, K. Nomoto, Shortest recurrence periods of novae. Astrophys. J. 793, 136 (2014)

    Article  ADS  Google Scholar 

  • M. Kato, I. Hachisu, H. Saio, Recurrent novae and long-term evolution of mass-accreting white dwarfs—toward the accurate mass retention efficiency (2017). arXiv:1711.01529

  • Y. Kawai, H. Saio, K. Nomoto, Off-center ignition of nuclear burning in merging white dwarfs. Astrophys. J. 315, 229 (1987)

    Article  ADS  Google Scholar 

  • Y. Kawai, H. Saio, K. Nomoto, Steady state models of white dwarfs accreting helium or carbon/oxygen-rich matter. Astrophys. J. 315, 229 (1988)

    Article  ADS  Google Scholar 

  • A. Khokhlov, Mechanisms for the initiation of detonations in the degenerate matter of supernovae. Astron. Astrophys. 245, 114 (1991)

    ADS  Google Scholar 

  • H. Kitamura, Pycnonuclear reactions in dense matter near solidification. Astrophys. J. 539, 888 (2000)

    Article  ADS  Google Scholar 

  • K. Langanke, G. Martinez-Pinedo, Rate tables for the weak processes of pf-SHELL nuclei in stellar environments. At. Data Nucl. Data Tables 79, 1 (2001)

    Article  ADS  Google Scholar 

  • N. Langer, A. Deutschmann, S. Wellstein, P. Höflich, The evolution of main sequence star + white dwarf binary systems towards Type Ia supernovae. Astron. Astrophys. 362, 1046 (2000)

    ADS  Google Scholar 

  • S.-C. Leung, K. Nomoto, Dependence of nucleosynthesis on Model Parameters of Type Ia supernovae. Astrophys. J. Suppl. Ser. (2017, submitted). arXiv:1710.04254

  • S.C. Leung, M.C. Chu, L.M. Lin, A new hydrodynamics code for Type Ia supernovae. Mon. Not. R. Astron. Soc. 454, 1238 (2015a)

    Article  ADS  Google Scholar 

  • S.C. Leung, M.C. Chu, L.M. Lin, Dark matter admixed Type Ia supernovae. Astrophys. J. 812, 110 (2015b)

    Article  ADS  Google Scholar 

  • W. Li, J.S. Bloom, P. Podsiadlowski et al., Exclusion of a luminous red giant as a companion star to the progenitor of supernova SN 2011fe. Nature 480, 348 (2011)

    Article  ADS  Google Scholar 

  • X.-D. Li, E.P.J. van den Heuvel, Evolution of white dwarf binaries: supersoft X-ray sources and progenitors of Type Ia supernovae. Astron. Astrophys. 322, L9 (1997)

    ADS  Google Scholar 

  • M. Limongi, A. Tornambe, He stars and He-accreting CO white dwarfs. Astrophys. J. 371, 317 (1991)

    Article  ADS  Google Scholar 

  • M. Livio, The progenitors of Type Ia supernovae, in Type Ia Supernovae, Theory and Cosmology, ed. by J.C. Niemeyer, J.W. Truran (Cambridge University Press, Cambridge, 2000), p. 33

    Google Scholar 

  • E. Livne, Successive detonations in accreting white dwarfs as an alternative mechanism for type I supernovae. Astrophys. J. Lett. 354, L53 (1990)

    Article  ADS  Google Scholar 

  • E. Livne, A.S. Glasner, Numerical simulations of off-center detonations in helium shells. Astrophys. J. 370, 272 (1991)

    Article  ADS  Google Scholar 

  • D. Maoz, F. Mannucci, G. Nelemans, Observational clues to the progenitors of Type Ia supernovae. Annu. Rev. Astron. Astrophys. 52, 107 (2014)

    Article  ADS  Google Scholar 

  • K. Mori et al., Impact of new Gamow-Teller strengths on explosive Type Ia supernova nucleosynthesis. Astrophys. J. 833, 179 (2016)

    Article  ADS  Google Scholar 

  • K. Nariai, K. Nomoto, D. Sugimoto, Nova explosion of mass-accreting white dwarfs. Publ. Astron. Soc. Jpn. 32, 473 (1980)

    ADS  Google Scholar 

  • K. Nomoto, Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms. Astrophys. J. 253, 798 (1982a)

    Article  ADS  Google Scholar 

  • K. Nomoto, Accreting white dwarf models for type 1 supernovae. II. Off-center detonation supernovae. Astrophys. J. 257, 780 (1982b)

    Article  ADS  Google Scholar 

  • K. Nomoto, I. Iben Jr., Carbon ignition in a rapidly accreting degenerate dwarf—a clue to the nature of the merging process in close binaries. Astrophys. J. 297, 531 (1985)

    Article  ADS  Google Scholar 

  • K. Nomoto, Y. Kondo, Conditions for accretion-induced collapse of white dwarfs. Astrophys. J. Lett. 367, 19 (1991)

    Article  ADS  Google Scholar 

  • K. Nomoto, D. Sugimoto, Rejuvenation of helium white dwarfs by mass accretion. Publ. Astron. Soc. Jpn. 31, 287 (1977)

    ADS  Google Scholar 

  • K. Nomoto, D. Sugimoto, S. Neo, Carbon deflagration supernova, an alternative to carbon detonation. Astrophys. Space Sci. 39, L37 (1976)

    Article  ADS  Google Scholar 

  • K. Nomoto, K. Nariai, D. Sugimoto, Rapid mass accretion onto white dwarfs and formation of an extended envelope. Publ. Astron. Soc. Jpn. 31, 287 (1979)

    ADS  Google Scholar 

  • K. Nomoto, F.-K. Thielemann, K. Yokoi, Accreting white dwarf models of type I supernovae. III. Carbon deflagration supernovae. Astrophys. J. 286, 644 (1984)

    Article  ADS  Google Scholar 

  • K. Nomoto, H. Yamaoka, T. Shigeyama, S. Kumagai, T. Tsujimoto, Type I supernovae and evolution of interacting binaries, in Supernovae, Proc. of Session LIV held in Les Houche 1990, ed. by S. Bludmann et al.. NATO ASI Ser. C (North-Holland, Amsterdam, 1994), p. 199. http://supernova.astron.s.u-tokyo.ac.jp/~nomoto/reference

    Google Scholar 

  • K. Nomoto, K. Iwamoto, N. Kishimoto, Type Ia supernovae: their origin and possible applications in cosmology. Science 276, 1378 (1997)

    Article  ADS  Google Scholar 

  • K. Nomoto, H. Umeda, C. Kobayashi et al., Type Ia supernova progenitors, environmental effects, and cosmic supernova rates, in Type Ia Supernovae, Theory and Cosmology, ed. by J.C. Niemeyer, J.W. Truran (Cambridge University Press, Cambridge, 2000a), p. 63

    Google Scholar 

  • K. Nomoto, H. Umeda, C. Kobayashi et al., Type Ia supernovae: progenitors and evolution with redshift, in Cosmic Explosions AIP Conference Proceedings, vol. 522 (2000b), p. 35

    Chapter  Google Scholar 

  • K. Nomoto, T. Suzuki, J. Deng, T. Uenishi, I. Hachisu, Progenitors of Type Ia supernovae: circumstellar interaction, rotation, and steady hydrogen burning, in Supernovae as Cosmological Lighthouses 1604–2004, ed. by Turatto et al.. ASP Conference Series, vol. 342 (2005), p. 105

    Google Scholar 

  • K. Nomoto, H. Saio, M. Kato, I. Hachisu, Thermal stability of white dwarfs accreting hydrogen-rich matter and progenitors of Type Ia supernovae. Astrophys. J. 663, 1269 (2007)

    Article  ADS  Google Scholar 

  • K. Nomoto, Y. Kamiya, N. Nakasato et al., Progenitors of Type Ia supernovae: single degenerate and double degenerates. AIPC News 1111, 267 (2009)

    ADS  Google Scholar 

  • K. Nomoto, M. Kamiya, N. Nakasato, Type Ia supernova models and progenitor scenarios, in IAU Symposium 281, Binary Paths to Type Ia Supernovae Explosions (Cambridge University Press, Cambridge, 2013a), p. 253

    Google Scholar 

  • K. Nomoto, C. Kobayashi, N. Tominaga, Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457 (2013b)

    Article  ADS  Google Scholar 

  • K. Nomoto, S.-C. Leung, Thermonuclear explosions of Chandrasekhar mass white dwarfs, in Handbook of Supernovae, vol. 2, ed. by A.W. Alsabti, P. Murdin (Springer) (2017), p. 1275. http://supernova.astron.s.u-tokyo.ac.jp/~nomoto/reference

    Chapter  Google Scholar 

  • R. Pakmor, S. Hachinger, F.K. Röpke, W. Hillebrandt, Violent mergers of nearly equal-mass white dwarf as progenitors of subluminous Type Ia supernovae. Astron. Astrophys. 528, A117 (2011)

    Article  ADS  Google Scholar 

  • F. Patat, P. Chandra, R. Chevalier et al., Detection of circumstellar material in a normal Type Ia supernova. Science 317, 924 (2007)

    Article  ADS  Google Scholar 

  • L. Piersanti, S. Gagliardi, I. Iben, A. Tornambe, Carbon-oxygen white dwarf accreting CO-rich matter. II. Self-regulating accretion process up to the explosive stage. Astrophys. J. 598, 1229 (2003)

    Article  ADS  Google Scholar 

  • A.Y. Potekhin, G. Chabrier, Thermonuclear fusion in dense stars. Electron screening, conductive cooling, and magnetic field effects. Astron. Astrophys. 538, AA115 (2012)

    Article  ADS  Google Scholar 

  • H. Saio, K. Nomoto, Off-center carbon ignition in rapidly rotating, accreting carbon-oxygen white dwarfs. Astrophys. J. 615, 444 (2004)

    Article  ADS  Google Scholar 

  • Y. Sato, N. Nakasato, A. Tanikawa, K. Nomoto, K. Maedak, I. Hachisu, The critical mass ratio of double white dwarf binaries for violent merger-induced Type Ia supernova explosions. Astrophys. J. 821, 67 (2017)

    Article  ADS  Google Scholar 

  • B.E. Schaefer, A. Pagnotta, An absence of ex-companion stars in the Type Ia supernova remnant SNR 0509-67.5. Nature 481, 164 (2012)

    Article  ADS  Google Scholar 

  • I.R. Seitenzahl, C.A. Meakin, D.M. Townsley, D.Q. Lamb, J.W. Truran, Spontaneous initiation of detonations in white dwarf environments: determination of critical sizes. Astrophys. J. 696, 515 (2009)

    Article  ADS  Google Scholar 

  • K. Shen, L. Bildsten, Thermally stable nuclear burning on accreting white dwarfs. Astrophys. J. 660, 1444 (2007)

    Article  ADS  Google Scholar 

  • T. Shigeyama, K. Nomoto, H. Yamoka, F.-K. Thielemann, Possible models for the Type Ia supernova 1990N. Astrophys. J. Lett. 386, L13 (1992)

    Article  ADS  Google Scholar 

  • S. Starrfield, W.M. Sparks, J.W. Truran, G. Shaviv, Neon novae recurrent novae and type-I supernovae, in Supernovae, ed. by S.E. Woosley (Springer, Berlin, 1991), p. 602

    Chapter  Google Scholar 

  • A. Sternberg, A. Gal-Yam, J.D. Simon et al., Circumstellar material in Type Ia supernovae via sodium absorption features. Science 333, 856 (2011)

    Article  ADS  Google Scholar 

  • D. Sugimoto, M. Fujimoto, A general theory for thermal pulses of finite amplitude in nuclear shell-burnings. Publ. Astron. Soc. Jpn. 30, 467 (1978)

    ADS  Google Scholar 

  • D. Sugimoto, M. Fujimoto, K. Nariai, K. Nomoto, in IAU Colloquium 53, White Dwarfs and Variable Degenerate Stars, ed. by H.M. Van Horn, V. Weidemann (University of Rochester, Rochester, 1979), p. 280

    Google Scholar 

  • D. Sugimoto, K. Nomoto, Presupernova models and supernovae. Space Sci. Rev. 25, 155 (1980)

    Article  ADS  Google Scholar 

  • R.E. Taam, Helium runaways in white dwarfs. Astrophys. J. 237, 142 (1980)

    Article  ADS  Google Scholar 

  • F.-K. Thielemann, K. Nomoto, K. Yokoi, Explosive nucleosynthesis in carbon deflagration models of type I supernovae. Astron. Astrophys. 158, 17 (1986)

    ADS  Google Scholar 

  • R.F. Webbink, Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae. Astrophys. J. 277, 355 (1984)

    Article  ADS  Google Scholar 

  • S.E. Woosley, R.E. Taam, T.A. Weaver, Models for type I supernova. I. Detonations in white dwarfs. Astrophys. J. 301, 601 (1986)

    Article  ADS  Google Scholar 

  • S.E. Woosley, T.A. Weaver, Sub-Chandrasekhar mass models for Type Ia supernovae. Astrophys. J. 423, 371 (1994)

    Article  ADS  Google Scholar 

  • Yield Table, http://supernova.astron.s.u-tokyo.ac.jp/~nomoto/yields (2018)

  • S.C. Yoon, P. Podsiadlowski, S. Rosswog, Remnant evolution after a carbon-oxygen white dwarf merger. Mon. Not. R. Astron. Soc. 380, 933 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and JSPS KAKENHI Grant Numbers JP26400222, JP16H02168, JP17K05382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken’ichi Nomoto.

Additional information

Supernovae

Edited by Andrei Bykov, Roger Chevalier, John Raymond, Friedrich-Karl Thielemann, Maurizio Falanga and Rudolf von Steiger

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomoto, K., Leung, SC. Single Degenerate Models for Type Ia Supernovae: Progenitor’s Evolution and Nucleosynthesis Yields. Space Sci Rev 214, 67 (2018). https://doi.org/10.1007/s11214-018-0499-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0499-0

Keywords

Navigation