Skip to main content
Log in

Kak’s three-stage protocol of secure quantum communication revisited: hitherto unknown strengths and weaknesses of the protocol

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Kak’s three-stage protocol for quantum key distribution is revisited with special focus on its hitherto unknown strengths and weaknesses. It is shown that this protocol can be used for secure direct quantum communication. Further, the implementability of this protocol in the realistic situation is analyzed by considering various Markovian noise models. It is found that the Kak’s protocol and its variants in their original form can be implemented only in a restricted class of noisy channels, where the protocols can be transformed to corresponding protocols based on logical qubits in decoherence free subspace. Specifically, it is observed that Kak’s protocol can be implemented in the presence of collective rotation and collective dephasing noise, but cannot be implemented in its original form in the presence of other types of noise, like amplitude and phase damping noise. Further, the performance of the protocol in the noisy environment is quantified by computing average fidelity under various noise models, and subsequently a set of preferred states for secure communication in noisy environment have also been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The term “unconditional security” is frequently used in the literature of QKD assuming the devices used to implement are ideal and trustworthy.

  2. Note that [24] contradicts the well-established results of Ref. [25] and the protocol reported [24] is not loophole free.

  3. An alternative definition exists in the literature [38] according to which Kak’s scheme should be viewed as a scheme for deterministic QKD since it does not involve block transmission. However, a deterministic QKD scheme can be adapted to perform direct secure quantum communication if the sender encrypts the message with a randomly chosen private key before sending it to the receiver using deterministic QKD and revealing the key only when she ensures the secure transmission of ciphertext.

  4. Here, it may be noted that although Kak’s protocol in its original form would not work under the CD noise, there are techniques to use logical qubits and thus to exploit the advantage of a decoherence free subspace to realize Kak’s protocol in presence of CD noise [54, 56], but no such decoherence free subspace is known for the AD and PD noise.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: International Conference on Computer System and Signal Processing, IEEE, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bennett, C.H.: Quantum cryptography using any two non orthogonal states. Phys. Rev. Lett. 68, 3121 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Goldenberg, L., Vaidman, L.: Quantum cryptography based on orthogonal states. Phys. Rev. Lett. 75, 1239 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  7. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  8. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  9. Degiovanni, I., Berchera, I.R., Castelletto, S., et al.: Quantum dense key distribution. Phys. Rev. A 69, 032310 (2004)

    Article  ADS  Google Scholar 

  10. Deng, F.-G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  11. Lucamarini, M., Mancini, S.: Secure deterministic communication without entanglement. Phys. Rev. Lett. 94, 140501 (2005)

    Article  ADS  Google Scholar 

  12. Shenoy, A., Pathak, A., Srikanth, R.: Quantum cryptography: key distribution and beyond. Quanta 6, 1–47 (2017)

    Article  MathSciNet  Google Scholar 

  13. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)

    Article  MATH  Google Scholar 

  14. Zhao, Y., Qi, B., Ma, X., Lo, H.-K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006)

    Article  ADS  Google Scholar 

  15. Schmitt-Manderbach, T., Weier, H., Fürst, M., et al.: Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  ADS  Google Scholar 

  16. Lo, H.-K., Curty, M., Tamaki, K.: Secure quantum key distribution. Nat. Photon. 8, 595 (2014)

    Article  ADS  Google Scholar 

  17. Hu, J.-Y., Yu, B., Jing, M.-Y., et al.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  18. Zhang, W., Ding, D.-S., Sheng, Y.-B., et al.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  19. Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication. Sci. Bull. 62, 1519–1524 (2017)

    Article  Google Scholar 

  20. Cao, Y., Li, Y.-H., Cao, Z., et al.: Direct counterfactual communication via quantum Zeno effect. Proc. Nat. Acad. Sci. 114, 4920–4924 (2017)

    Article  ADS  Google Scholar 

  21. Kak, S.: A three-stage quantum cryptography protocol. Found. Phys. Lett. 19, 293–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mandal, S., Macdonald, G., El Rifai, M., et al.: Multi-photon implementation of three-stage quantum cryptography protocol. In: 2013 International Conference on Information Networking (ICOIN), IEEE, pp. 6–11 (2013)

  23. Chan, K.W.C., El Rifai, M., Verma, P., Kak, S., Chen, Y.: Security analysis of the multi-photon three-stage quantum key distribution. Int. J. Cryptogr. Inf. Secur. 5, 3/4 (2015)

    Google Scholar 

  24. Parakh, A.: A quantum oblivious transfer protocol. In: SPIE Optical Engineering + Applications of International Society for Optics and Photonics, pp. 883204–883204 (2013)

  25. Lo, H.-K.: Insecurity of quantum secure computations. Phys. Rev. A 56, 1154 (1997)

    Article  ADS  Google Scholar 

  26. Kang, M.-S., Hong, C.-H., Heo, J., Lim, J.-I., Yang, H.-J.: Quantum signature scheme using a single qubit rotation operator. Int. J. Theor. Phys. 54, 614–629 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nikolopoulos, G.M.: Applications of single-qubit rotations in quantum public-key cryptography. Phys. Rev. A 77, 032348 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. El Rifai, M., Verma, P. K.: An IEEE 802.11 quantum handshake using the three-stage protocol. In: 2014 23rd International Conference on Computer Communication and Networks (ICCCN), IEEE, pp. 1–6 (2014)

  29. Kak, S., Chen, Y., Verma, P.: IAQC: The intensity-aware quantum cryptography protocol. arXiv preprint arXiv:1206.6778 (2012)

  30. Kak, S.: Threshold quantum cryptography. arXiv preprint arXiv:1310.6333 (2013)

  31. El Rifai, M., Punekar, N., Verma, P. K.: Implementation of an m-ary three-stage quantum cryptography protocol. In: Quantum Communications and Quantum Imaging XI vol. 8875, International Society for Optics and Photonics, p. 88750S (2013)

  32. Darunkar, B., Verma, P. K.: The braided single-stage protocol for quantum secure communication. In: Quantum Information and Computation XII, vol. 9123, International Society for Optics and Photonics, p. 912308 (2014)

  33. Wu, L., Chen, Y.: Three-stage quantum cryptography protocol under collective-rotation noise. Entropy 17, 2919–2931 (2015)

    Article  ADS  Google Scholar 

  34. Parakh, A., Van Brandwijk, J.: Correcting rotational errors in three stage QKD. In: 2016 23rd International Conference on Telecommunications (ICT), IEEE, pp. 1–5 (2016)

  35. Chitikela, S.: Noise analysis for two quantum cryptography protocols. arXiv preprint arXiv:1207.7281 (2012)

  36. Pathak, A.: Elements of Quantum Computation and Quantum Communication. Taylor & Francis, New York (2013)

    MATH  Google Scholar 

  37. Shukla, C., Banerjee, A., Pathak, A.: Improved protocols of secure quantum communication using W states. Int. J. Theor. Phys. 52, 1914–1924 (2013)

    Article  MathSciNet  Google Scholar 

  38. Long, G.-L., Deng, F.-G., Wang, C., et al.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2, 251–272 (2007)

    Article  ADS  Google Scholar 

  39. Yang, Y-y: A quantum secure direct communication protocol without quantum memories. Int. J. Theor. Phys. 53, 2216–2221 (2014)

    Article  MathSciNet  Google Scholar 

  40. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: different alternative approaches. Quantum Inf. Process. 14, 2195–2210 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Thapliyal, K., Pathak, A.: Applications of quantum cryptographic switch: various tasks related to controlled quantum communication can be performed using Bell states and permutation of particles. Quantum Inf. Process. 14, 2599–2616 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Banerjee, A., Shukla, C., Thapliyal, K., Pathak, A., Panigrahi, P.K.: Asymmetric quantum dialogue in noisy environment. Quantum Inf. Process. 16, 49 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Banerjee, A., Thapliyal, K., Shukla, C., Pathak, A.: Quantum conference. Quantum Inf. Process. 17, 161 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  44. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Thapliyal, K., Sharma, R.D., Pathak, A.: Protocols for quantum binary voting. Int. J. Quantum Inf. 15, 1750007 (2017)

    Article  MATH  Google Scholar 

  46. Sharma, R.D., Thapliyal, K., Pathak, A.: Quantum sealed-bid auction using a modified scheme for multiparty circular quantum key agreement. Quantum Inf. Process. 16, 169 (2017)

    Article  ADS  MATH  Google Scholar 

  47. Thapliyal, K., Sharma, R. D., Pathak, A.: Orthogonal-state-based and semi-quantum protocols for quantum private comparison in noisy environment. arXiv preprint arXiv:1608.00101 (2016)

  48. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  49. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  50. Preskill, J.: Lecture notes for physics 229: quantum information and computation. Calif. Inst. Technol. 12, 14 (1998)

    Google Scholar 

  51. Thapliyal, K., Banerjee, S., Pathak, A., Omkar, S., Ravishankar, V.: Quasiprobability distributions in open quantum systems: spin-qubit systems. Ann. Phys. 362, 261–286 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  53. Bourennane, M., Eibl, M., Gaertner, S., et al.: Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004)

    Article  ADS  Google Scholar 

  54. Sharma, R.D., Thapliyal, K., Pathak, A., Pan, A.K., De, A.: Which verification qubits perform best for secure communication in noisy channel? Quantum Inf. Process. 15, 1703–1718 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  55. Fischer, D.G., Mack, H., Cirone, M.A., Freyberger, M.: Enhanced estimation of a noisy quantum channel using entanglement. Phys. Rev. A 64, 022309 (2001)

    Article  ADS  Google Scholar 

  56. Li, X.-H., Deng, F.-G., Zhou, H.-Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)

    Article  ADS  Google Scholar 

  57. Thapliyal, K., Pathak, A., Banerjee, S.: Quantum cryptography over non-Markovian channels. Quantum Inf. Process. 16, 115 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Boileau, J.C., Gottesman, D., Laflamme, R., Poulin, D., Spekkens, R.W.: Robust polarization-based quantum key distribution over a collective-noise channel. Phys. Rev. Lett. 92, 017901 (2004)

    Article  ADS  Google Scholar 

  59. Sharma, V., Thapliyal, K., Pathak, A., Banerjee, S.: A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols. Quantum Inf. Process. 15, 4681–4710 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

KT thanks CSIR, India, for the support provided through Senior Research Fellowship. AP thanks Defense Research & Development Organization (DRDO), India, for the support provided through the Project Number ERIP/ER/ 1403163/M/01/1603.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirban Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thapliyal, K., Pathak, A. Kak’s three-stage protocol of secure quantum communication revisited: hitherto unknown strengths and weaknesses of the protocol. Quantum Inf Process 17, 229 (2018). https://doi.org/10.1007/s11128-018-2001-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2001-z

Keywords

Navigation