Skip to main content
Log in

A novel 4-hydroxycoumarin biosynthetic pathway

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Coumarin forms in melilotoside (trans-ortho-coumaric acid glucoside)-containing plant species upon cell damage. In moldy melilotoside-containing plant material, trans-ortho-coumaric acid is converted by fungi to 4-hydroxycoumarin, two molecules of which spontaneously combine with formaldehyde to give dicoumarol. Dicoumarol causes internal bleeding in livestock and is the forerunner of the warfarin group of medicinal anticoagulants. Here, we report 4-hydroxycoumarin formation by biphenyl synthase (BIS). Two new BIS cDNAs were isolated from elicitor-treated Sorbus aucuparia cell cultures. The encoded isoenzymes preferred ortho-hydroxybenzoyl (salicoyl)-CoA as a starter substrate and catalyzed a single decarboxylative condensation with malonyl-CoA to give 4-hydroxycoumarin. When elicitor-treated S. aucuparia cell cultures were fed with the N-acetylcysteamine thioester of salicylic acid, 4-hydroxycoumarin accumulated in the culture medium. Incubation of the BIS isoenzymes with benzoyl-CoA and malonyl-CoA resulted in the formation of 3,5-dihydroxybiphenyl which is the precursor of the phytoalexins of the Maloideae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abd El-Mawla AMA, Beerhues L (2002) Benzoic acid biosynthesis in cell cultures of Hypericum androsaemum. Planta 214:727–733

    Article  CAS  PubMed  Google Scholar 

  • Abe I, Abe T, Wanibuchi K, Noguchi H (2006) Enzymatic formation of quinolone alkaloids by a plant type III polyketide synthase. Org Lett 8:6063–6065

    Article  CAS  PubMed  Google Scholar 

  • Aliotta G, Cafiero G, De Feo V, Sacchi R (1994) Potential allelochemicals from Ruta graveolens L. and their action on radish seeds. J Chem Ecol 20:2761–2775

    Article  CAS  Google Scholar 

  • Appendino G, Tagliapietra S, Nano GM, Picci V (1988a) Ferprenin, a prenylated coumarin from Ferula communis. Phytochemistry 27:944–946

    Article  CAS  Google Scholar 

  • Appendino G, Tagliapietra S, Gariboldi P, Nano GM, Picci V (1988b) ω-Oxygenated prenylated coumarins from Ferula communis. Phytochemistry 27:3619–3624

    Article  CAS  Google Scholar 

  • Arnoldi L, Ballero M, Fuzzati N, Maxia A, Percalli E, Pagni L (2004) HPLC-DAD-MS identification of bioactive secondary metabolites from Ferula communis roots. Fitoterapia 75:342–354

    Article  CAS  PubMed  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    Article  CAS  PubMed  Google Scholar 

  • Beuerle T, Pichersky E (2002) Purification and characterization of benzoate: coenzyme A ligase from Clarkia breweri. Arch Biochem Biophys 400:258–264

    Article  CAS  PubMed  Google Scholar 

  • Bourgaud F, Hehn A, Larbat R, Doerper S, Gontier E, Kellner S, Matern U (2006) Biosynthesis of coumarins in plants: a major pathway still to be unravelled for cytochrome P450 enzymes. Phytochem Rev 5:293–308

    Article  CAS  Google Scholar 

  • Brown SA (1986) Biochemistry of plant coumarins. In: Conn EE (ed) Recent advances in phytochemistry, vol 20: the shikimic acid pathway. Plenum Press, New York, pp 287–316

  • Bye A, King HK (1970) The biosynthesis of 4-hydroxycoumarin and dicoumarol by Aspergillus fumigatus Fresenius. Biochem J 117:237–245

    CAS  PubMed  Google Scholar 

  • Chexal KK, Fouweather C, Holker JS (1975) The biosynthesis of fungal metabolites. Part VII. Production and biosynthesis of 4,7-dimethoxy-5-methylcoumarin in Aspergillus variecolor. J Chem Soc (Perkin 1):554–556

  • Ferrer JL, Jez JM, Bowman ME, Dixon RA, Noel JP (1999) Structure of chalcone synthase and the molecular basis of plant polyketide biosynthesis. Nat Struct Biol 6:775–784

    Article  CAS  PubMed  Google Scholar 

  • Gaid MM, Sircar D, Beuerle T, Mitra A, Beerhues L (2009) Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures. J Plant Physiol 166:1343–1349

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Toyonaga T, Nagumo S, Nagai M (1989) Biosynthesis of 4-hydroxy-5-methylcoumarin in a Gerbera jamesonii hybrid. Phytochemistry 28:2329–2330

    Article  CAS  Google Scholar 

  • Jez JM, Bowman ME, Noel JP (2002) Expanding the biosynthetic repertoire of plant type III polyketide synthases by altering starter molecule specificity. Proc Natl Acad Sci USA 99:5319–5324

    Article  CAS  PubMed  Google Scholar 

  • Kurosaki F, Itoh M, Kizawa Y, Nishi A (1993) Partial purification and characterization of a polyketide biosynthetic enzyme, 6-hydroxymellein synthase, in elicitor-treated carrot cell extracts. Arch Biochem Biophys 300:157–163

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Falkenstein-Paul H, Schmidt W, Beerhues L (2003) Benzophenone synthase and chalcone synthase from Hypericum androsaemum cell cultures: cDNA cloning, functional expression, and site-directed mutagenesis of two polyketide synthases. Plant J 34:847–855

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Beuerle T, Klundt T, Beerhues L (2004) Biphenyl synthase from yeast-extract-treated cell cultures of Sorbus aucuparia. Planta 218:492–496

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Raeth T, Beuerle T, Beerhues L (2007) Biphenyl synthase, a novel type III polyketide synthase. Planta 225:1495–1503

    Article  CAS  PubMed  Google Scholar 

  • Matern U (1991) Coumarins and other phenylpropanoid compounds in the defense response of plant cells. Planta Med 57(Suppl 1):S15–S20

    Article  CAS  PubMed  Google Scholar 

  • Matern U, Lüer P, Kreusch D (1999) Biosynthesis of coumarins. In: Sankawa U (ed) Comprehensive natural products chemistry, vol 1: polyketides and other secondary metabolites including fatty acids and their derivatives. Elsevier, Amsterdam, pp 623–637

  • Murray RDH (1995) Coumarins. Nat Prod Rep 12:477–505

    Article  CAS  Google Scholar 

  • Murray RDH, Méndez J, Brown SA (1982) The natural coumarins: occurrence, chemistry and biochemistry. Wiley, Chichester

    Google Scholar 

  • Oguro S, Akashi T, Ayabe S, Noguchi H, Abe I (2004) Probing biosynthesis of plant polyketides with synthetic N-acetylcysteamine thioesters. Biochem Biophys Res Commun 325:561–567

    Article  CAS  PubMed  Google Scholar 

  • Späth E, Simon AFJ, Lintner J (1936) Die Konstitution des Ammoresinols (XIX. Mitteil. über natürliche Cumarine). Ber Dt Chem Ges 69:1656–1664

    Article  Google Scholar 

  • Suo Z, Chen H, Walsh CT (2000) Acyl-CoA hydrolysis by the high molecular weight protein 1 subunit of yersiniabactin synthetase: mutational evidence for a cascade of four acyl-enzyme intermediates during hydrolytic editing. Proc Natl Acad Sci USA 97:14188–14193

    Article  CAS  PubMed  Google Scholar 

  • Valle MG, Appendino G, Nano GM, Picci V (1987) Prenylated coumarins and sesquiterpenoids from Ferula communis. Phytochemistry 26:253–256

    Article  Google Scholar 

  • Wildermuth MC (2006) Variations on a theme: synthesis and modification of plant benzoic acids. Curr Opin Plant Biol 9:288–296

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft (focus program 1152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger Beerhues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Raeth, T., Beuerle, T. et al. A novel 4-hydroxycoumarin biosynthetic pathway. Plant Mol Biol 72, 17–25 (2010). https://doi.org/10.1007/s11103-009-9548-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-009-9548-0

Keywords

Navigation