Skip to main content

Advertisement

Log in

Apigenin: A Promising Molecule for Cancer Prevention

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Apigenin, a naturally occurring plant flavone, abundantly present in common fruits and vegetables, is recognized as a bioactive flavonoid shown to possess anti-inflammatory, antioxidant and anticancer properties. Epidemiologic studies suggest that a diet rich in flavones is related to a decreased risk of certain cancers, particularly cancers of the breast, digestive tract, skin, prostate and certain hematological malignancies. It has been suggested that apigenin may be protective in other diseases that are affected by oxidative process, such as cardiovascular and neurological disorders, although more research needs to be conducted in this regard. Human clinical trials examining the effect of supplementation of apigenin on disease prevention have not been conducted, although there is considerable potential for apigenin to be developed as a cancer chemopreventive agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Apaf-1:

apoptotic protease activating factor 1

AR:

androgen receptor

CK:

casein kinase

DFF:

DNA fragmentation factor

EGFR:

epidermal growth factor receptor

ER:

estrogen receptor

ERK:

extracellular signal-activated kinase

HIF:

hypoxia-inducible factor

Id:

Inhibitor of differentiation or DNA binding protein

IGF:

insulin-like growth factor

IGFBP:

insulin-like growth factor binding protein

LPS:

lipopolysaccharide

MAPK:

mitogen-activated protein kinase

MLL:

mixed lineage leukemia

NF-κB:

nuclear factor-kappaB

ODC:

ornithine decarboxylase

PARP:

poly (ADP-ribose) polymerase

PI3K:

phosphatidylinositol 3-kinase

PMA:

phorbol 12-myristate 13-acetate

Rb:

retinoblastoma

SOD:

superoxide dismutase

TNF:

tumor necrosis factor

UV:

ultraviolet

VEGF:

vascular endothelial growth factor

REFERENCES

  1. Hahn WC, Weinberg RA. Modelling the molecular circuitry of cancer. Nat Rev Cancer. 2002;2:331–41.

    Article  CAS  PubMed  Google Scholar 

  2. Austoker J. Cancer prevention in primary care. Current trends and some prospects for the future. BMJ. 1994;309:517–20.

    CAS  PubMed  Google Scholar 

  3. Hajjar RR. Cancer in the elderly: is it preventable? Clin Geriatr Med. 2004;20:293–316.

    Article  PubMed  Google Scholar 

  4. Mackey S. Promoting lifestyle modification for cancer prevention. J Am Diet Assoc. 2004;104:1568–9.

    Article  PubMed  Google Scholar 

  5. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002;113:71S–88.

    Article  CAS  PubMed  Google Scholar 

  6. Lippman SM, Hong WK. Cancer prevention science and practice. Cancer Res. 2002;62:5119–25.

    CAS  PubMed  Google Scholar 

  7. Gupta S. Prostate cancer chemoprevention: current status and future prospects. Toxicol Appl Pharmacol. 2007;224:369–76.

    Article  CAS  PubMed  Google Scholar 

  8. Heederik D, Kromhout H, Burema J, Biersteker K, Kromhout D. Occupational exposure and 25-year incidence rate of non-specific lung disease: the Zutphen Study. Int J Epidemiol. 1990;19:945–52.

    Article  CAS  PubMed  Google Scholar 

  9. Knekt P, Järvinen R, Seppänen R, Hellövaara M, Teppo L, Pukkala E, et al. Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol. 1997;146:223–30.

    CAS  PubMed  Google Scholar 

  10. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary flavonoids and cancer risk in the Zutphen Elderly Study. Nutr Cancer. 1994;22:175–84.

    Article  CAS  PubMed  Google Scholar 

  11. Rossi M, Negri E, Lagiou P, Talamini R, Dal Maso L, Montella M, et al. Flavonoids and ovarian cancer risk: a case-control study in Italy. Int J Cancer. 2008;123:895–8.

    Article  CAS  PubMed  Google Scholar 

  12. Bosetti C, Spertini L, Parpinel M, Gnagnarella P, Lagiou P, Negri E, et al. Flavonoids and breast cancer risk in Italy. Cancer Epidemiol Biomarkers Prev. 2005;14:805–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hoensch H, Groh B, Edler L, Kirch W. Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J Gastroenterol. 2008;14:2187–93.

    Article  CAS  PubMed  Google Scholar 

  14. Patel D, Shukla S, Gupta S. Apigenin and cancer chemoprevention: progress, potential and promise. Int J Oncol. 2007;30:233–45.

    CAS  PubMed  Google Scholar 

  15. Hertog MG, Kromhout D, Aravanis C, et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med. 1995;155:381–6.

    Article  CAS  PubMed  Google Scholar 

  16. Aherne SA, O’Brien NM. Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 2002;18:75–81.

    Article  CAS  PubMed  Google Scholar 

  17. Johannot L, Somerset SM. Age-related variations in flavonoid intake and sources in the Australian population. Public Health Nutr. 2006;9:1045–54.

    Article  PubMed  Google Scholar 

  18. Cheung ZH, Leung MC, Yip HK, Wu W, Siu FK, So KF. A neuroprotective herbal mixture inhibits caspase-3-independent apoptosis in retinal ganglion cells. Cell Mol Neurobiol. 2008;28:137–55.

    Article  PubMed  Google Scholar 

  19. McKay DL, Blumberg JB. A review of the bioactivity and potential health benefits of chamomile tea (Matricaria recutita L.). Phytother Res. 2006;20:519–30.

    Article  CAS  PubMed  Google Scholar 

  20. Bevilacqua L, Buiarelli F, Coccioli F, Jasionowska R. Identification of compounds in wine by HPLC-tandem mass spectrometry. Ann Chim. 2004;94:679–89.

    Article  CAS  PubMed  Google Scholar 

  21. Gerhauser C. Beer constituents as potential cancer chemopreventive agents. European J Cancer. 2005;41:1941–54.

    Article  CAS  Google Scholar 

  22. Svehlikova V, Bennett RN, Mellon FA, Needs PW, Piacente S, Kroon PA, et al. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry. 2004;65:2323–32.

    Article  CAS  PubMed  Google Scholar 

  23. Gupta S, Afaq F, Mukhtar H. Selective growth-inhibitory, cell-cycle deregulatory and apoptotic response of apigenin in normal versus human prostate carcinoma cells. Biochem Biophys Res Commun. 2001;287:914–20.

    Article  CAS  PubMed  Google Scholar 

  24. Kim HY, Kim OH, Sung MK. Effects of phenol-depleted and phenol-rich diets on blood markers of oxidative stress, and urinary excretion of quercetin and kaempferol in healthy volunteers. J Am Coll Nutr. 2003;22:217–23.

    CAS  PubMed  Google Scholar 

  25. Yang CS, Landau JM, Huang MT, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr. 2001;21:381–406.

    Article  CAS  PubMed  Google Scholar 

  26. O’Prey J, Brown J, Fleming J, Harrison PR. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol. 2003;66:2075–88.

    Article  PubMed  CAS  Google Scholar 

  27. Thiery-Vuillemin A, Nguyen T, Pivot X, Spano JP, Dufresnne A, Soria JC. Molecularly targeted agents: their promise as cancer chemopreventive interventions. Eur J Cancer. 2005;41:2003–15.

    Article  CAS  PubMed  Google Scholar 

  28. Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandstrom B, et al. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999;81:447–55.

    CAS  PubMed  Google Scholar 

  29. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3:768–80.

    Article  CAS  PubMed  Google Scholar 

  30. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr. 2000;130:2243–50.

    CAS  PubMed  Google Scholar 

  31. Janssen K, Mensink RP, Cox FJ, Harryvan JL, Hovenier R, Hollman PC, et al. Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr. 1998;67:255–62.

    CAS  PubMed  Google Scholar 

  32. Kuo ML, Lin JK. Genotoxicities of nitropyrenes and their modulation by apigenin, tannic acid, ellagic acid and indole-3-carbinol in the Salmonella and CHO systems. Mutat Res. 1992;270:87–95.

    CAS  PubMed  Google Scholar 

  33. Middleton JR E, Kandaswami C, Theoharides TC. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacol Rev. 2000;52:673–751.

    CAS  PubMed  Google Scholar 

  34. Birt DF, Mitchell D, Gold B, Pour P, Pinch HC. Inhibition of ultraviolet light induced skin carcinogenesis in SKH-1 mice by apigenin, a plant flavonoid. Anticancer Res. 1997;17:85–91.

    CAS  PubMed  Google Scholar 

  35. Van Dross R, Xue Y, Knudson A, Pelling JC. The chemopreventive bioflavonoid apigenin modulates signal transduction pathways in keratinocyte and colon carcinoma cell lines. J Nutr. 2003;133:3800S–4.

    PubMed  Google Scholar 

  36. Wei H, Tye L, Bresnick E, Birt DF. Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res. 1990;50:499–502.

    CAS  PubMed  Google Scholar 

  37. Myhrstad MC, Carlsen H, Nordstrom O, Blomhoff R, Moskaug JO. Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radic Biol Med. 2002;32:386–93.

    Article  CAS  PubMed  Google Scholar 

  38. Liang YC, Huang YT, Tsai SH, Lin-Shiau SY, Chen CF, Lin JK. Suppression of inducible cyclooxygenase and inducible nitric oxide synthase by apigenin and related flavonoids in mouse macrophages. Carcinogenesis. 1999;20:1945–52.

    Article  CAS  PubMed  Google Scholar 

  39. Kawai M, Hirano T, Higa S, Arimitsu J, Maruta M, Kuwahara Y, et al. Favonoids and related compounds as anti-allergic substances. Allergol Int. 2007;56:113–23.

    Article  CAS  PubMed  Google Scholar 

  40. Yano S, Umeda D, Yamashita T, Ninomiya Y, Sumida M, Fujimura Y, et al. Dietary flavones suppress IgE and Th2 cytokines in OVA-immunized BALB/c mice. Eur J Nutr. 2007;46:257–63.

    Article  CAS  PubMed  Google Scholar 

  41. Choi JS, Choi YJ, Park SH, Kang JS, Kang YH. Flavones mitigate tumor necrosis factor-alpha-induced adhesion molecule upregulation in cultured human endothelial cells: role of nuclear factor-kappa B. J Nutr. 2004;4:1013–9.

    Google Scholar 

  42. Williams RJ, Spencer JP, Rice-Evans C. Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med. 2004;36:838–49.

    Article  CAS  PubMed  Google Scholar 

  43. Lee SF, Lin JK. Inhibitory effects of phytopolyphenols on TPA-induced transformation, PKC activation, and c-jun expression in mouse fibroblast cells. Nutr Cancer. 1997;28:177–83.

    Article  CAS  PubMed  Google Scholar 

  44. Lin JK, Chen YC, Huang YT, Lin-Shiau SY. Suppression of protein kinase C and nuclear oncogene expression as possible molecular mechanisms of cancer chemoprevention by apigenin and curcumin. J Cell Biochem Suppl. 1997;28–29:39–48.

    Article  PubMed  Google Scholar 

  45. Mounho BJ, Thrall BD. The extracellular signal-regulated kinase pathway contributes to mitogenic and antiapoptotic effects of peroxisome proliferators in vitro. Toxicol Appl Pharmacol. 1999;159:125–33.

    Article  CAS  PubMed  Google Scholar 

  46. Shukla S, Gupta S. Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle. 2007;6:1102–14.

    CAS  PubMed  Google Scholar 

  47. Carrillo C, Cafferatam EG, Genovese J, O’Reilly M, Roberts AB, Santa-Coloma TA. TGF-beta1 up-regulates the mRNA for the Na+/Ca2+ exchanger in neonatal rat cardiac myocytes. Cell Mol Biol. 1998;44:543–51.

    CAS  PubMed  Google Scholar 

  48. Yin F, Giuliano AE, Van Herle AJ. Signal pathways involved in apigenin inhibition of growth and induction of apoptosis of human anaplastic thyroid cancer cells (ARO). Anticancer Res. 1999;19:4297–303.

    CAS  PubMed  Google Scholar 

  49. Hessenauer A, Montenarh M, Gotz C. Inhibition of CK2 activity provokes different responses in hormone-sensitive and hormone-refractory prostate cancer cells. Int J Oncol. 2003;22:1263–70.

    CAS  PubMed  Google Scholar 

  50. Landesman-Bollag E, Song DH, Romieu-Mourez R, Sussman DJ, Cardiff RD, Sonenshein GE, et al. Protein kinase CK2: signaling and tumorigenesis in the mammary gland. Mol Cell Biochem. 2001;227:153–65.

    Article  CAS  PubMed  Google Scholar 

  51. Plaumann B, Fritsche M, Rimpler H, Brandner G, Hess RD. Flavonoids activate wild-type p53. Oncogene. 1996;13:1605–14.

    CAS  PubMed  Google Scholar 

  52. Lepley DM, Pelling JC. Induction of p21/WAF1 and G1 cell-cycle arrest by the chemopreventive agent apigenin. Mol Carcinog. 1997;19:74–82.

    Article  CAS  PubMed  Google Scholar 

  53. Gupta S, Afaq F, Mukhtar H. Involvement of nuclear factor-kappa B, Bax and Bcl-2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene. 2002;21:3727–38.

    Article  CAS  PubMed  Google Scholar 

  54. Shukla S, Gupta S. Molecular mechanisms for apigenin-induced cell-cycle arrest and apoptosis of hormone refractory human prostate carcinoma DU145 cells. Mol Carcinog. 2004;39:114–26.

    Article  CAS  PubMed  Google Scholar 

  55. Wang IK, Lin-Shiau SY, Lin JK. Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer. 1999;35:1517–25.

    Article  CAS  PubMed  Google Scholar 

  56. Iwashita K, Kobori M, Yamaki K, Tsushida T. Flavonoids inhibit cell growth and induce apoptosis in B16 melanoma 4A5 cells. Biosci Biotechnol Biochem. 2000;64:1813–20.

    Article  CAS  PubMed  Google Scholar 

  57. Hirano T, Oka K, Akiba M. Antiproliferative effects of synthetic and naturally occurring flavonoids on tumor cells of the human breast carcinoma cell line, ZR-75-1. Res Commun Chem Pathol Pharmacol. 1989;64:69–78.

    CAS  PubMed  Google Scholar 

  58. Lindenmeyer F, Li H, Menashi S, Soria C, Lu H. Apigenin acts on the tumor cell invasion process and regulates protease production. Nutr Cancer. 2001;39:139–47.

    Article  CAS  PubMed  Google Scholar 

  59. Panes J, Gerritsen ME, Anderson DC, Miyasaka M, Granger DN. Apigenin inhibits tumor necrosis factor-induced intercellular adhesion molecule-1 upregulation in vivo. Microcirculation. 1996;3:279–86.

    Article  CAS  PubMed  Google Scholar 

  60. Piantelli M, Rossi C, Iezzi M, La Sorda R, Iacobelli S, Alberti S, et al. Flavonoids inhibit melanoma lung metastasis by impairing tumor cells endothelium interactions. J Cell Physiol. 2006;207:23–9.

    Article  CAS  PubMed  Google Scholar 

  61. Osada M, Imaoka S, Funae Y. Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1alpha protein. FEBS Lett. 2004;575:59–63.

    Article  CAS  PubMed  Google Scholar 

  62. Fang J, Xia C, Cao Z, Zheng JZ, Reed E, Jiang BH. Apigenin inhibits VEGF and HIF-1 expression via PI3K/AKT/p70S6K1 and HDM2/p53 pathways. FASEB J. 2005;19:342–53.

    Article  CAS  PubMed  Google Scholar 

  63. Le Bail JC, Laroche T, Marre-Fournier F, Habrioux G. Aromatase and 17 beta-hydroxysteroid dehydrogenase inhibition by flavonoids. Cancer Lett. 1998;133:101–6.

    Article  PubMed  Google Scholar 

  64. Hiremath SP, Badami S, Hunasagatta SK, Patil SB. Antifertility and hormonal properties of flavones of Striga orobanchioides. Eur J Pharmacol. 2000;391:193–7.

    Article  CAS  PubMed  Google Scholar 

  65. Mak P, Leung YK, Tang WY, Harwood C, Ho SM. Apigenin suppresses cancer cell growth through ERbeta. Neoplasia. 2006;8:896–904.

    Article  CAS  PubMed  Google Scholar 

  66. Shukla S, Mishra A, Fu P, MacLennan GT, Resnick MI, Gupta S. Up-regulation of insulin-like growth factor binding protein-3 by apigenin leads to growth inhibition and apoptosis of 22Rv1 xenograft in athymic nude mice. FASEB J. 2005;19:2042–4.

    CAS  PubMed  Google Scholar 

  67. Shukla S, MacLennan GT, Flask CA, Fu P, Mishra A, Resnick MI, et al. Blockade of beta-catenin signaling by plant flavonoid apigenin suppresses prostate carcinogenesis in TRAMP mice. Cancer Research. 2007;67:6925–35.

    Article  CAS  PubMed  Google Scholar 

  68. Menichincheri M, Ballinari D, Bargiotti A, Bonomini L, Ceccarelli W, D’Alessio R, et al. Catecholic flavonoids acting as telomerase inhibitors. J Med Chem. 2004;47:6466–75.

    Article  CAS  PubMed  Google Scholar 

  69. Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV. Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem. 2005;280:5636–45.

    Article  CAS  PubMed  Google Scholar 

  70. Kim MH. Flavonoids inhibit VEGF/bFGF-induced angiogenesis in vitro by inhibiting the matrix-degrading proteases. J Cell Biochem. 2003;89:529–38.

    Article  CAS  PubMed  Google Scholar 

  71. Reiners Jr JJ, Clift R, Mathieu P. Suppression of cell cycle progression by flavonoids: dependence on the aryl hydrocarbon receptor. Carcinogenesis. 1999;20:1561–6.

    Article  CAS  PubMed  Google Scholar 

  72. Way TD, Kao MC, Lin JK. Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem. 2004;279:4479–89.

    Article  CAS  PubMed  Google Scholar 

  73. Kim JS, Eom JI, Cheong JW, Choi AJ, Lee JK, Yang WI, et al. Protein kinase CK2alpha as an unfavorable prognostic marker and novel therapeutic target in acute myeloid leukemia. Clin Cancer Res. 2007;13:1019–28.

    Article  CAS  PubMed  Google Scholar 

  74. Yang CS, Landau JM, Huang MT, Newmark HL. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu Rev Nutr. 2001;21:381–406.

    Article  CAS  PubMed  Google Scholar 

  75. O’Prey J, Brown J, Fleming J, Harrison PR. Effects of dietary flavonoids on major signal transduction pathways in human epithelial cells. Biochem Pharmacol. 2003;66:2075–88.

    Article  PubMed  CAS  Google Scholar 

  76. Thiery-Vuillemin A, Nguyen T, Pivot X, Spano JP, Dufresnne A, Soria JC. Molecularly targeted agents: Their promise as cancer chemopreventive interventions. Eur J Cancer. 2005;41:2003–15.

    Article  CAS  PubMed  Google Scholar 

  77. Nielsen SE, Young JF, Daneshvar B, Lauridsen ST, Knuthsen P, Sandstrom B, et al. Effect of parsley (Petroselinum crispum) intake on urinary apigenin excretion, blood antioxidant enzymes and biomarkers for oxidative stress in human subjects. Br J Nutr. 1999;81:447–55.

    CAS  PubMed  Google Scholar 

  78. Scott EN, Gescher AJ, Steward WP, Brown K. Development of dietary phytochemical chemopreventive agents: biomarkers and choice of dose for early clinical trials. Cancer Prev Res (Phila Pa). 2009;2:525–30.

    Google Scholar 

  79. Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N. Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr. 2000;130:2243–50.

    CAS  PubMed  Google Scholar 

  80. Janssen K, Mensink RP, Cox FJ, Harryvan JL, Hovenier R, Hollman PC, et al. Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr. 1998;67:255–62.

    CAS  PubMed  Google Scholar 

  81. Way TD, Kao MC, Lin JK. Degradation of HER2/neu by apigenin induces apoptosis through cytochrome c release and caspase-3 activation in HER2/neu-overexpressing breast cancer cells. FEBS Lett. 2005;579:145–52.

    Article  CAS  PubMed  Google Scholar 

  82. Weldon CB, McKee A, Collins-Burow BM, Melnik LI, Scandurro AB, McLachlan JA, et al. PKC-mediated survival signaling in breast carcinoma cells: a role for MEK1-AP1 signaling. Int J Oncol. 2005;26:763–8.

    CAS  PubMed  Google Scholar 

  83. Choi EJ, Kim GH. Apigenin Induces Apoptosis through a Mitochondria/Caspase-Pathway in Human Breast Cancer MDA-MB-453 Cells. J Clin Biochem Nutr. 2009;44:260–5.

    Article  CAS  PubMed  Google Scholar 

  84. Choi EJ, Kim GH. 5-Fluorouracil combined with apigenin enhances anticancer activity through induction of apoptosis in human breast cancer MDA-MB-453 cells. Oncol Rep. 2009;22:1533–7.

    Article  CAS  PubMed  Google Scholar 

  85. Yin F, Giuliano AE, Law RE, Van Herle AJ. Apigenin inhibits growth and induces G2/M arrest by modulating cyclin-CDK regulators and ERK MAP kinase activation in breast carcinoma cells. Anticancer Res. 2001;21:413–20.

    CAS  PubMed  Google Scholar 

  86. Choi EJ, Kim GH. Apigenin causes G (2)/M arrest associated with the modulation of p21 (Cip1) and Cdc2 and activates p53-dependent apoptosis pathway in human breast cancer SK-BR-3 cells. J Nutr Biochem. 2009;20:285–90.

    Article  CAS  PubMed  Google Scholar 

  87. Wang C, Kurzer MS. Phytoestrogen concentration determines effects on DNA synthesis in human breast cancer cells. Nutr Cancer. 1997;28:236–47.

    Article  CAS  PubMed  Google Scholar 

  88. Wang C, Kurzer MS. Effects of phytoestrogens on DNA synthesis in MCF-7 cells in the presence of estradiol or growth factors. Nutr Cancer. 1998;31:90–100.

    Article  CAS  PubMed  Google Scholar 

  89. Collins-Burow BM, Burow ME, Duong BN, McLachlan JA. Estrogenic and antiestrogenic activities of flavonoid phytochemicals through estrogen receptor binding-dependent and-independent mechanisms. Nutr Cancer. 2000;38:229–44.

    Article  CAS  PubMed  Google Scholar 

  90. Long X, Fan M, Bigsby RM, Nephew KP. Apigenin inhibits antiestrogen-resistant breast cancer cell growth through estrogen receptor-alpha-dependent and estrogen receptor-alpha-independent mechanisms. Mol Cancer Ther. 2008;7:2096–108.

    Article  CAS  PubMed  Google Scholar 

  91. Zhang S, Yang X, Morris ME. Combined effects of multiple flavonoids on breast cancer resistance protein (ABCG2)-mediated transport. Pharm Res. 2004;21:1263–73.

    Article  CAS  PubMed  Google Scholar 

  92. Stroheker T, Picard K, Lhuguenot JC, Canivenc-Lavier MC, Chagnon MC. Steroid activities comparison of natural and food wrap compounds in human breast cancer cell lines. Food Chem Toxicol. 2004;42:887–97.

    Article  CAS  PubMed  Google Scholar 

  93. Seo HS, DeNardo DG, Jacquot Y, Laïos I, Vidal DS, Zambrana CR, et al. Stimulatory effect of genistein and apigenin on the growth of breast cancer cells correlates with their ability to activate ER alpha. Breast Cancer Res Treat. 2006;99:121–34.

    Article  CAS  PubMed  Google Scholar 

  94. Van Meeuwen JA, Korthagen N, de Jong PC, Piersma AH, Van den Berg M. (Anti) estrogenic effects of phytochemicals on human primary mammary fibroblasts, MCF-7 cells and their co-culture. Toxicol Appl Pharmacol. 2007;221:372–83.

    Article  PubMed  CAS  Google Scholar 

  95. Menendez JA, Vazquez-Martin A, Oliveras-Ferraros C, Garcia-Villalba R, Carrasco-Pancorbo A, Fernandez-Gutierrez A, et al. Analyzing effects of extra-virgin olive oil polyphenols on breast cancer-associated fatty acid synthase protein expression using reverse-phase protein microarrays. Int J Mol Med. 2008;22:433–9.

    CAS  PubMed  Google Scholar 

  96. Chen T, Li LP, Lu XY, Jiang HD, Zeng S. Absorption and excretion of luteolin and apigenin in rats after oral administration of Chrysanthemum morifolium extract. J Agric Food Chem. 2007;55:273–7.

    Article  CAS  PubMed  Google Scholar 

  97. Lee SH, Ryu JK, Lee KY, Woo SM, Park JK, Yoo JW, et al. Enhanced anti-tumor effect of combination therapy with gemcitabine and apigenin in pancreatic cancer. Cancer Lett. 2008;259:39–49.

    Article  CAS  PubMed  Google Scholar 

  98. Zheng PW, Chiang LC, Lin CC. Apigenin induced apoptosis through p53-dependent pathway in human cervical carcinoma cells. Life Sci. 2005;76:1367–79.

    Article  CAS  PubMed  Google Scholar 

  99. Czyz J, Madeja Z, Irmer U, Korohoda W, Hulser DF. Flavonoid apigenin inhibits motility and invasiveness of carcinoma cells in vitro. Int J Cancer. 2005;114:12–8.

    Article  CAS  PubMed  Google Scholar 

  100. Wu C, Chen F, Rushing JW, Wang X, Kim HJ, Huang G, et al. Antiproliferative activities of parthenolide and golden feverfew extract against three human cancer cell lines. J Med Food. 2006;9:55–61.

    Article  CAS  PubMed  Google Scholar 

  101. Wang W, Heideman L, Chung CS, Pelling JC, Koehler KJ, Birt DF. Cell-cycle arrest at G2/M and growth inhibition by apigenin in human colon carcinoma cell lines. Mol Carcinog. 2000;28:102–10.

    Article  PubMed  Google Scholar 

  102. Wang W, VanAlstyne PC, Irons KA, Chen S, Stewart JW, Birt DF. Individual and interactive effects of apigenin analogs on G2/M cell-cycle arrest in human colon carcinoma cell lines. Nutr Cancer. 2004;48:106–14.

    Article  CAS  PubMed  Google Scholar 

  103. Takagaki N, Sowa Y, Oki T, Nakanishi R, Yogosawa S, Sakai T. Apigenin induces cell cycle arrest and p21/WAF1 expression in a p53-independent pathway. Int J Oncol. 2005;26:185–9.

    CAS  PubMed  Google Scholar 

  104. Chung CS, Jiang Y, Cheng D, Birt DF. Impact of adenomatous polyposis coli (APC) tumor supressor gene in human colon cancer cell lines on cell cycle arrest by apigenin. Mol Carcinog. 2007;46:773–82.

    Article  CAS  PubMed  Google Scholar 

  105. Farah M, Parhar K, Moussavi M, Eivemark S, Salh B. 5, 6-Dichloro-ribifuranosylbenzimidazole- and apigenin-induced sensitization of colon cancer cells to TNF-alpha-mediated apoptosis. Am J Physiol Gastrointest Liver Physiol. 2003;285:919–28.

    Google Scholar 

  106. Au A, Li B, Wang W, Roy H, Koehler K, Birt D. Effect of dietary apigenin on colonic ornithine decarboxylase activity, aberrant crypt foci formation, and tumorigenesis in different experimental models. Nutr Cancer. 2006;54:243–51.

    Article  CAS  PubMed  Google Scholar 

  107. Svehlikova V, Bennett RN, Mellon FA, Needs PW, Piacente S, Kroon PA, et al. Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry. 2004;65:2323–32.

    Article  CAS  PubMed  Google Scholar 

  108. Al-Fayez M, Cai H, Tunstall R, Steward WP, Gescher AJ. Differential modulation of cyclooxygenase-mediated prostaglandin production by the putative cancer chemopreventive flavonoids tricin, apigenin and quercetin. Cancer Chemother Pharmacol. 2006;58:816–25.

    Article  CAS  PubMed  Google Scholar 

  109. Vargo MA, Voss OH, Poustka F, Cardounel AJ, Grotewold E, Doseff AI. Apigenin-induced-apoptosis is mediated by the activation of PKCdelta and caspases in leukemia cells. Biochem Pharmacol. 2006;72:681–92.

    Article  CAS  PubMed  Google Scholar 

  110. Navarro-Núñez L, Lozano ML, Palomo M, Martínez C, Vicente V, Castillo J, et al. Apigenin inhibits platelet adhesion and thrombus formation and synergizes with aspirin in the suppression of the arachidonic acid pathway. J Agric Food Chem. 2008;56:2970–6.

    Article  PubMed  CAS  Google Scholar 

  111. Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP. Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol. 2005;69:1421–32.

    Article  CAS  PubMed  Google Scholar 

  112. Abaza L, Talorete TP, Yamada P, Kurita Y, Zarrouk M, Isoda H. Induction of growth inhibition and differentiation of human leukemia HL-60 cells by a Tunisian gerboui olive leaf extract. Biosci Biotechnol Biochem. 2007;71:1306–12.

    Article  CAS  PubMed  Google Scholar 

  113. Monasterio A, Urdaci MC, Pinchuk IV, Lopez-Moratalla N, Martinez-Irujo J. Flavonoids induce apoptosis in human leukemia U937 cells through caspase- and caspase-calpain-dependent pathways. J Nutr Cancer. 2004;50:90–100.

    Article  CAS  Google Scholar 

  114. Horvathova K, Novotny L, Vachalkova A. The free radical scavenging activity of four flavonoids determined by the comet assay. Neoplasma. 2003;50:291–5.

    CAS  PubMed  Google Scholar 

  115. Strick R, Strissel PL, Borgers S, Smith SL, Rowley JD. Dietary bioflavonoids induce cleavage in the MLL gene and may contribute to infant leukemia. Proc Natl Acad Sci USA. 2000;97:4790–5.

    Article  CAS  PubMed  Google Scholar 

  116. Li ZD, Liu LZ, Shi X, Fang J, Jiang BH. Benzo[a]pyrene-3, 6-dione inhibited VEGF expression through inducing HIF-1alpha degradation. Biochem Biophys Res Commun. 2007;357:517–23.

    Article  CAS  PubMed  Google Scholar 

  117. Watanabe N, Hirayama R, Kubota N. The chemopreventive flavonoid apigenin confers radiosensitizing effect in human tumor cells grown as monolayers and spheroids. J Radiat Res (Tokyo). 2007;48:45–50.

    Article  CAS  Google Scholar 

  118. Lee WJ, Chen WK, Wang CJ, Lin WL, Tseng TH. Apigenin inhibits HGF-promoted invasive growth and metastasis involving blocking PI3K/Akt pathway and beta 4 integrin function in MDA-MB-231 breast cancer cells. Toxicol Appl Pharmacol. 2008;226:178–91.

    Article  CAS  PubMed  Google Scholar 

  119. Engelmann C, Blot E, Panis Y, Bauer S, Trochon V, Nagy HJ, et al. Apigenin–strong cytostatic and anti-angiogenic action in vitro contrasted by lack of efficacy in vivo. Phytomedicine. 2002;9:489–95.

    Article  CAS  PubMed  Google Scholar 

  120. Fang J, Zhou Q, Liu LZ, Xia C, Hu X, Shi X, et al. Apigenin inhibits tumor angiogenesis through decreasing HIF-1alpha and VEGF expression. Carcinogenesis. 2007;28:858–64.

    Article  CAS  PubMed  Google Scholar 

  121. Zhu F, Liu XG, Liang NC. Effect of emodin and apigenin on invasion of human ovarian carcinoma HO-8910PM cells in vitro. Ai Zheng. 2003;22:358–62.

    CAS  PubMed  Google Scholar 

  122. Hu XW, Meng D, Fang J. Apigenin inhibited migration and invasion of human ovarian cancer A2780 cells through focal adhesion kinase. Carcinogenesis. 2008;29:2369–76.

    Article  CAS  PubMed  Google Scholar 

  123. Li ZD, Hu XW, Wang YT, Fang J. Apigenin inhibits proliferation of ovarian cancer A2780 cells through Id1. FEBS Lett. 2009;583:1999–2003.

    Article  CAS  PubMed  Google Scholar 

  124. Knowles LM, Zigrossi DA, Tauber RA, Hightower C, Milner JA. Flavonoids suppress androgen-independent human prostate tumor proliferation. Nutr Cancer. 2000;38:116–22.

    Article  CAS  PubMed  Google Scholar 

  125. Lee SC, Kuan CY, Yang CC, Yang SD. Bioflavonoids commonly and potently induce tyrosine dephosphorylation/inactivation of oncogenic proline-directed protein kinase FA in human prostate carcinoma cells. Anticancer Res. 1998;18:1117–21.

    CAS  PubMed  Google Scholar 

  126. Morrissey C, O’Neill A, Spengler B, Christoffel V, Fitzpatrick JM, Watson RW. Apigenin drives the production of reactive oxygen species and initiates a mitochondrial mediated cell death pathway in prostate epithelial cells. Prostate. 2005;63:131–42.

    Article  CAS  PubMed  Google Scholar 

  127. Shukla S, Gupta S. Suppression of constitutive and tumor necrosis factor alpha-induced nuclear factor (NF)-kappaB activation and induction of apoptosis by apigenin in human prostate carcinoma PC-3 cells: correlation with down-regulation of NF-kappaB-responsive genes. Clin Cancer Res. 2004;10:3169–78.

    Article  CAS  PubMed  Google Scholar 

  128. Shukla S, Gupta S. Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Mol Cancer Ther. 2006;5:843–52.

    Article  CAS  PubMed  Google Scholar 

  129. Shukla S, Gupta S. Apigenin-induced prostate cancer cell death is initiated by reactive oxygen species and p53 activation. Free Radic Biol Med. 2008;44:1833–45.

    Article  CAS  PubMed  Google Scholar 

  130. Shukla S, Gupta S. Apigenin suppresses insulin-like growth factor I receptor signaling in human prostate cancer: an in vitro and in vivo study. Mol Carcinog. 2009;48:243–52.

    Article  CAS  PubMed  Google Scholar 

  131. Kaur P, Shukla S, Gupta S. Plant flavonoid apigenin inactivates Akt to trigger apoptosis in human prostate cancer: an in vitro and in vivo study. Carcinogenesis. 2008;29:2210–7.

    Article  CAS  PubMed  Google Scholar 

  132. Mirzoeva S, Kim ND, Chiu K, Franzen CA, Bergan RC, Pelling JC. Inhibition of HIF-1 alpha and VEGF expression by the chemopreventive bioflavonoid apigenin is accompanied by Akt inhibition in human prostate carcinoma PC3-M cells. Mol Carcinog. 2008;47:686–700.

    Article  CAS  PubMed  Google Scholar 

  133. Franzen CA, Amargo E, Todorović V, Desai BV, Huda S, Mirzoeva S, et al. The chemopreventive bioflavonoid apigenin inhibits prostate cancer cell motility through the focal adhesion kinase/Src signaling mechanism. Cancer Prev Res (Phila Pa). 2009;2(9):830–41.

    Google Scholar 

  134. McVean M, Xiao H, Isobe K, Pelling JC. Increase in wild-type p53 stability and transactivational activity by the chemopreventive agent apigenin in keratinocytes. Carcinogenesis. 2000;21:633–9.

    Article  CAS  PubMed  Google Scholar 

  135. Li B, Birt DF. In vivo and in vitro percutaneous absorption of cancer preventive flavonoid apigenin in different vehicles in mouse skin. Pharm Res. 1996;13:1710–5.

    Article  CAS  PubMed  Google Scholar 

  136. Li B, Pinch H, Birt DF. Influence of vehicle, distant topical delivery, and biotransformation on the chemopreventive activity of apigenin, a plant flavonoid, in mouse skin. Pharm Res. 1996;13:1530–4.

    Article  CAS  PubMed  Google Scholar 

  137. Tong X, Van Dross RT, Abu-Yousif A, Morrison AR, Pelling JC. Apigenin prevents UVB-induced cyclooxygenase 2 expression: coupled mRNA stabilization and translational inhibition. Mol Cell Biol. 2007;27:283–96.

    Article  CAS  PubMed  Google Scholar 

  138. Van Dross RT, Hong X, Essengue S, Fischer SM, Pelling JC. Modulation of UVB-induced and basal cyclooxygenase-2 (COX-2) expression by apigenin in mouse keratinocytes: role of USF transcription factors. Mol Carcinog. 2007;46:303–14.

    Article  PubMed  CAS  Google Scholar 

  139. Caltagirone S, Rossi C, Poggi A, Ranelletti FO, Natali PG, Brunetti M, et al. Flavonoids apigenin and quercetin inhibit melanoma growth and metastatic potential. Int J Cancer. 2000;87:595–600.

    Article  CAS  PubMed  Google Scholar 

  140. Schroder-van der Elst JP, van der Heide D, Romijn JA, Smit JW. Differential effects of natural flavonoids on growth and iodide content in a human Na+/I-symporter-transfected follicular thyroid carcinoma cell line. Eur J Endocrinol. 2004;150:557–64.

    Article  PubMed  Google Scholar 

  141. O’Toole SA, Sheppard BL, Sheils O, O'Leary JJ, Spengler B, Christoffel V. Analysis of DNA in endometrial cancer cells treated with phyto-estrogenic compounds using comparative genomic hybridisation microarrays. Planta Med. 2005;71:435–9.

    Article  PubMed  Google Scholar 

  142. Wu K, Yuan LH, Xia W. Inhibitory effects of apigenin on the growth of gastric carcinoma SGC-7901 cells. World J Gastroenterol. 2005;11:4461–4.

    CAS  PubMed  Google Scholar 

  143. Eaton EA, Walle UK, Lewis AJ, Hudson T, Wilson AA, Walle T. Flavonoids, potent inhibitors of the human P-form phenolsulfotransferase: Potential role in drug metabolism and chemoprevention. Drug Metab Dispos. 1996;24:232–7.

    CAS  PubMed  Google Scholar 

  144. Watjen W, Weber N, Lou YJ, Wang ZQ, Chovolou Y, Kampkotter A, et al. Prenylation enhances cytotoxicity of apigenin and liquiritigenin in rat H4IIE hepatoma and C6 glioma cells. Food Chem Toxicol. 2007;45:119–24.

    Article  CAS  PubMed  Google Scholar 

  145. Yee SB, Lee JH, Chung HY, Im KS, Bae SJ, Choi JS, et al. Inhibitory effects of luteolin isolated from Ixeris sonchifolia Hance on the proliferation of HepG2 human hepatocellular carcinoma cells. Arch Pharm Res. 2003;26:151–6.

    Article  CAS  PubMed  Google Scholar 

  146. Jeyabal PV, Syed MB, Venkataraman M, Sambandham JK, Sakthisekaran D. Apigenin inhibits oxidative stress-induced macromolecular damage in N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinogenesis in Wistar albino rats. Mol Carcinog. 2005;44:11–20.

    Article  CAS  PubMed  Google Scholar 

  147. Sanderson JT, Hordijk J, Denison MS, Springsteel MF, Nantz MH, Van den Berg M. Induction and inhibition of aromatase (CYP19) activity by natural and synthetic flavonoid compounds in H295R human adrenocortical carcinoma cells. Toxicol Sci. 2004;82:70–9.

    Article  CAS  PubMed  Google Scholar 

  148. Ohno S, Shinoda S, Toyoshima S, Nakazawa H, Makino T, Nakajin S. Effects of flavonoid phytochemicals on cortisol production and on activities of steroidogenic enzymes in human adrenocortical H295R cells. J Steroid Biochem Mol Biol. 1999;80:355–63.

    Article  Google Scholar 

  149. Torkin R, Lavoie JF, Kaplan DR, Yeger H. Induction of caspase-dependent, p53-mediated apoptosis by apigenin in human neuroblastoma. Mol Cancer Ther. 2005;4:1–11.

    CAS  PubMed  Google Scholar 

  150. Das A, Banik NL, Ray SK. Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int J Cancer. 2006;119:2575–85.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The original work from author’s laboratory outlined in this chapter was supported by United States Public Health Service Grants RO1 CA108512, RO1 AT002709 and RO3 CA137667 (SS) and funds from Cancer Research and Prevention Foundation to SG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shukla, S., Gupta, S. Apigenin: A Promising Molecule for Cancer Prevention. Pharm Res 27, 962–978 (2010). https://doi.org/10.1007/s11095-010-0089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0089-7

KEY WORDS

Navigation