Skip to main content
Log in

Widespread chaos in rotation of the secondary asteroid in a binary system

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The chaotic behavior of the secondary asteroid in a system of binary asteroids due to the asphericity and orbital eccentricity is investigated analytically and numerically. The binary asteroids are modeled with a sphere–ellipsoid model, in which the secondary asteroid is ellipsoid. The first-order resonance is studied for different values of asphericity and eccentricity of the secondary asteroid. The results of the Chirikov method are verified by Poincare section which show good agreement between analytical and numerical methods. It is also shown that asphericity and eccentricity affect the size of resonance regions such that beyond the threshold value, the resonance overlapping occurs and widespread chaos is visible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bellerose, J., Scheeres, D.J.: Energy and stability in the full two body problem. Celest. Mech. Dyn. Astron. 100, 63–91 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Koon, W., Marsden, J.E., Ross, S.D., Lo, M., Scheeres, D.J.: Geometric mechanics and the dynamics of asteroid pairs. Ann. N. Y. Acad. Sci. 1017, 11–38 (2004)

    Article  Google Scholar 

  3. Scheeres, D.J., Ostro, S.J., Werner, R.A., Asphaug, E., Hudson, R.S.: Effects of gravitational interactions on asteroid spin states. Icarus 147, 106–118 (2000)

    Article  Google Scholar 

  4. Scheeres, D.J.: Bounds on rotation periods of disrupted binaries in the full 2-body problem. Celest. Mech. Dyn. Astron. 89(02), 127–140 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fahnestock, E.G., Scheeres, D.J.: Simulation and analysis of the dynamics of binary near-Earth asteroid (66391) 1999 KW4. Icarus 194, 410–435 (2008)

    Article  Google Scholar 

  6. Werner, R.A., Scheeres, D.J.: Mutual potential of homogeneous polyhedra. Celest. Mech. Dyn. Astron. 91, 337–349 (2005)

  7. Cuk, M., Nesvorny, D.: Orbital evolution of small binary asteroids. Icarus 207, 732–743 (2010)

    Article  MATH  Google Scholar 

  8. Steinberg, E., Sari, R.: Binary YORP and evolution of binary asteroids. Astron. J. 141(55), 1–10 (2011)

    Google Scholar 

  9. Zhao, Z., Chen, L.: Chemical chaos in enzyme kinetics. Nonlinear Dyn. 57(1–2), 135–142 (2009)

    Article  MATH  Google Scholar 

  10. Farshidianfar, A., Saghafi, A.: Global bifurcation and chaos analysis in nonlinear vibration of spur gear systems. Nonlinear Dyn. 75(4), 783–806 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jensen, C.N., True, H.: On a new route to chaos in railway dynamics. Nonlinear Dyn. 13(2), 117–129 (1997)

    Article  MATH  Google Scholar 

  12. Gao, Q., Ma, J.: Chaos and Hopf bifurcation of a finance system. Nonlinear Dyn. 58(1–2), 209–216 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, W., Zichen, D., Bo, W., Huajiang, O.: Chaos in an embedded single-walled carbon nanotube. Nonlinear Dyn. 72(1–2), 389–398 (2013)

    Article  Google Scholar 

  14. Zounes, R.S., Rand, R.H.: Global behavior of a nonlinear quasiperiodic Mathieu equation. Nonlinear Dyn. 27(1), 87–105 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Abouhazim, N., Belhaq, M., Rand, R.H.: Two models for the parametric forcing of a nonlinear oscillator. Nonlinear Dyn. 50(1–2), 147–160 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Luo, A.C.: Resonance and stochastic layer in a parametrically excited pendulum. Nonlinear Dyn. 25(4), 355–367 (2001)

    Article  MATH  Google Scholar 

  17. Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  18. Jose, J.V., Saletan, E.J.: Classical Dynamics: A Contemporary Approach. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  19. Sussman, G.J., Wisdom, J., Mayer, M.E.: Structure and Interpretation of Classical Mechanics. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  20. Chirikov, B.V.: Universal instability of many-dimensional oscillator systems. Phys. Rep. 52(5), 263–379 (1979)

    Article  MathSciNet  Google Scholar 

  21. Lichtenberg, A.J., Lieberman, M.A.: Regular and Chaotic Dynamics, 2nd edn. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Assadian.

Appendices

Appendix 1

In this appendix, the potential energy for an ellipsoidal rigid body in gravitational field of point-mass body is derived. It is assumed that the ellipsoidal rigid body of the mass \(m_s \) is subjected to the gravitational attraction of a point-mass or homogenous spherical body with the mass \(m_p \). The distance between the two bodies is supposed to be large in comparison with the size of the ellipsoid body and also center of mass of the ellipsoid moves on a Keplerian orbit (see Fig. 9). The potential takes the form:

(27)

where \(G\) is the universal gravitational constant and which is instantaneous orbital radius vector and is the position vector of \(dm\) with respect to the center of mass of the ellipsoid.

Fig. 9
figure 9

Sphere–ellipsoid configuration

The magnitude of can be expressed as

(28)

By using these representation

(29)

the inverse of \(\varDelta \) is expanded by means of Legendre polynomials, \(P_l \) as followed

$$\begin{aligned} \frac{1}{\varDelta }=\frac{1}{r\sqrt{1+\alpha ^{2}-2\alpha q}}=\frac{1}{r}\sum _{l=0}^\infty {\left( {-\alpha } \right) ^{l}P_l \left[ q \right] } \end{aligned}$$
(30)

The first four Legendre polynomials are

$$\begin{aligned} P_0 \left[ q \right]= & {} 1 \nonumber \\ P_1 \left[ q \right]= & {} q \nonumber \\ P_2 \left[ q \right]= & {} \frac{1}{2}\left( {3q^{2}-1} \right) \nonumber \\ P_3 \left[ q \right]= & {} \frac{1}{2}\left( {5q^{3}-3q} \right) \end{aligned}$$
(31)

which are utilized to derive approximate potential energy up to the third order, i.e.,

$$\begin{aligned} V\simeq V_0 +V_1 +V_2 +V_3 =\frac{\mathrm{Gm}_p }{r}\int \limits _{m_{s}} {\sum _{l=0}^3 {\left( {-\alpha } \right) ^{l}P_l \left[ q \right] } dm} \end{aligned}$$
(32)

The first term is

$$\begin{aligned} V_0 =-\frac{\mathrm{Gm}_p }{r}\int \limits _{m_{s}} {dm} =-\frac{\mathrm{Gm}_p m_s }{r} \end{aligned}$$
(33)

This is well-known Newton’s law of universal gravitation.

Forasmuch as the origin coincides with the center of mass, as said before, the second term is:

(34)

It follows that \(V_2 \) is expressed as:

(35)

By using these useful expressions

(36)

where \(E\) is the unit matrix and \(I\) is the moment of inertia tensor, the \(V_2 \) is followed as

(37)

By introducing unit vector

(38)

and considering that the moment of inertia is calculated in the body coordinate

$$\begin{aligned} \left[ I \right] ^\mathrm{ref}=T_B^\mathrm{ref} \left[ I \right] ^{B}T_\mathrm{ref}^B \end{aligned}$$
(39)

which \(T_B^\mathrm{ref} \) and \(T_\mathrm{ref}^B \) are transformation matrixes, transforming a vector from the body frame to the reference frame and vice versa, respectively, the final expression for \(V_2 \) is

$$\begin{aligned} V_2 =\frac{\mathrm{Gm}_p }{2r^{3}}\left\{ {3\hat{{r}}^{T}T_B^\mathrm{ref} \left[ I \right] ^{B}T_\mathrm{ref}^B \hat{{r}}-\hbox {Tr}\left[ I \right] } \right\} \end{aligned}$$
(40)

There are some integrals of the form \(\int {x^{p}y^{q}z^{r}\,dm} \) in evaluating \(V_3 \). This integral for an ellipsoid which has three symmetry planes, is zero whenever one of \(p, q, r\) is odd. According to fourth term of Legendre polynomial, \(P_3 \) contains only odd powers. Therefore, \(V_3 \) vanishes.

Thus the potential energy up to the third order is

$$\begin{aligned}&V\simeq V_0 +V_1 +V_2 +V_3 =-\frac{\mathrm{Gm}_p m_s }{r}\nonumber \\&\quad +\frac{\mathrm{Gm}_p }{2r^{3}}\left\{ {3\hat{{r}}^{T}\,T_B^\mathrm{ref} \left[ I \right] ^{B}T_\mathrm{ref}^B \hat{{r}}-\hbox {Tr}\left[ I \right] } \right\} \end{aligned}$$
(41)

Since in this paper only the rotational motion of ellipsoid rigid body is considered, the term of potential energy which contributes on the rotational motion is

$$\begin{aligned} V_\mathrm{rot} =\frac{\mathrm{Gm}_p }{2r^{3}}\left\{ {3\hat{{r}}^{T}\,T_B^\mathrm{ref} \left[ I \right] ^{B}T_\mathrm{ref}^B \hat{{r}}} \right\} \end{aligned}$$
(42)

Appendix 2

In this appendix, the Eq. (9) is derived in details. Consider the second term of the Hamiltonian

$$\begin{aligned} -\frac{\varepsilon ^{2}n^{2}I_3 }{4}\left( {\frac{a}{r}} \right) ^{3}\cos \left( {2\theta -2\!f} \right) \end{aligned}$$
(43)

The last part of this term can be written as

$$\begin{aligned}&\left( {\frac{a}{r}} \right) ^{3}\cos \left( {2\theta -2\!f} \right) \nonumber \\&\quad =\left( {\frac{a}{r}} \right) ^{3}\left( {\cos 2\theta \cos 2\!f+\sin 2\theta \sin 2\!f} \right) \end{aligned}$$
(44)

Also the \(\cos 2\!f\) and \(\sin 2\!f\) can be written in terms of sin and cos of the \(f\):

$$\begin{aligned} \cos 2\!f= & {} 2\left( {\cos f} \right) ^{2}-1 \nonumber \\ \sin 2\!f= & {} 2\cos f\sin f \end{aligned}$$
(45)

Using the series function based on the Bessel functions of the first kind, the following relations are used and substituted in the above equation :

$$\begin{aligned} \left( {\frac{a}{r}} \right) ^{3}= & {} 1+3e\cos M+\frac{3}{2}e^{2}\left( {1+3\cos 2M} \right) +O\left( {e^{3}} \right) \nonumber \\ \sin f= & {} \sin M+e\sin 2M+e^{2}\left( {\frac{9}{8}\sin 3M-\frac{7}{8}\sin M} \right) \nonumber \\&+\,O\left( {e^{3}} \right) \nonumber \\ \cos f= & {} \cos M+e\left( {\cos 2M-1} \right) \nonumber \\&+\frac{9}{8}e^{2}\left( {\cos 3M-\cos M} \right) +O\left( {e^{3}} \right) \end{aligned}$$
(46)

Then

$$\begin{aligned}&\left( {\frac{a}{r}} \right) ^{3}\left( {\cos 2\theta \left( {2\left( {\cos f} \right) ^{2}-1} \right) +\sin 2\theta \left( {2\cos f\sin f} \right) } \right) \nonumber \\&\quad =\left[ {1+3e\cos M+\frac{3}{2}e^{2}\left( {1+3\cos 2M} \right) } \right] \nonumber \\&\quad \quad \times \Bigg \{ \cos 2\theta \Bigg [ 2\Bigg (\! \cos M+e\left( {\cos 2M-1} \right) \nonumber \\&\quad \quad +\frac{9}{8}e^{2}\left( {\cos 3M-\cos M} \right) \Bigg )^{2}-1 \Bigg ] \nonumber \\&\quad \quad +\sin 2\theta \Bigg [ 2\Bigg (\! \cos M+e\left( {\cos 2M-1} \right) \nonumber \\&\qquad +\frac{9}{8}e^{2}\left( {\cos 3M-\cos M} \right) \Bigg ) \nonumber \\&\quad \quad \left. {\left. {\times \left( {\sin M\!+e\sin 2M\!+e^{2}\left( {\frac{9}{8}\sin 3M\!-\frac{7}{8}\sin M} \!\right) } \!\right) } \!\right] } \!\right\} \nonumber \\ \end{aligned}$$
(47)

By simplifying above equation by elementary arithmetic and combining the terms and collecting all the coefficients with the same rational power of eccentricity up to third order of eccentricity, yields:

$$\begin{aligned} H= & {} \frac{p_\theta ^2 }{2I_3 }-\frac{\varepsilon ^{2}n^{2}I_3 }{4}\left\{ \cos \left( {2\theta -2M} \right) \right. \nonumber \\&\left. +\frac{e}{2}\left[ {-\cos \left( {2\theta -M} \right) +7\cos \left( {2\theta -3M} \right) } \right] \right. \nonumber \\&\left. {+\frac{e^{2}}{2}\left[ {-5\cos \left( {2\theta -2M} \right) +17\cos \left( {2\theta -4M} \right) } \right] } \right\} \nonumber \\&+O\left( {e^{3}} \right) \end{aligned}$$
(48)

All of the above manipulations can be done using every computer algebra software such as Maple\({\copyright }\) and Mathematica\({\copyright }\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari Nadoushan, M., Assadian, N. Widespread chaos in rotation of the secondary asteroid in a binary system. Nonlinear Dyn 81, 2031–2042 (2015). https://doi.org/10.1007/s11071-015-2123-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-015-2123-0

Keywords

Navigation