Skip to main content
Log in

Apo A5 −1131T/C, FgB −455G/A, −148C/T, and CETP TaqIB gene polymorphisms and coronary artery disease in the Chinese population: a meta-analysis of 15,055 subjects

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Apolipoprotein A5 (APO A5) −1131T/C, fibrinogen β (FgB) −455G/A, −148C/T, and cholesteryl ester transfer protein (CETP) TaqIB gene polymorphisms have been indicated to be associated with the coronary artery disease (CAD) risk, but the individual study results are still inconsistent. To explore the relationship between APO A5 −1131T/C, FgB −455G/A, −148C/T, and CETP TaqIB gene polymorphisms and CAD in the Chinese population, the current meta-analysis involving 15,055 subjects from 40 individual studies was conducted. The pooled odds ratio (OR) for the association between APO A5 −1131T/C, FgB −455G/A, −148C/T, and CETP TaqIB gene polymorphisms and CAD and its corresponding 95 % confidence interval (95 % CI) were evaluated by random or fixed effect model. A significant association between APO A5 −1131T/C gene polymorphism and CAD in the Chinese population was found under an allelic (OR: 1.33, 95 % CI: 1.22–1.44, P < 0.00001), recessive (OR: 1.67, 95 % CI: 1.25–2.25, P = 0.0006), dominant (OR: 0.820, 95 % CI: 0.767–0.876, P = 1.0 × 10−10), homozygous (OR: 2.36, 95 % CI: 1.55–3.58, P < 0.0001) and heterozygous genetic models (OR: 1.136, 95 % CI:1.075–1.200, P = 1.0 × 10−10). A significant association between FgB −455G/A gene polymorphism and CAD was also detected in the Chinese population under an allelic (OR: 1.50, 95 % CI: 1.25–1.81, P < 0.0001), dominant (OR: 0.864, 95 % CI: 0.819–0.912, P = 1.0 × 10−10), homozygous (OR: 1.616, 95 % CI: 1.213–2.152, P = 0.001) and heterozygous genetic models (OR: 1.245, 95 % CI:1.138–1.361, P = 1.0 × 10−10). No significant association was found between them under a recessive genetic model (OR: 1.124, 95 % CI: 0.844–1.497, P = 0.424). A significant association was also found between FgB −148C/T gene polymorphism and CAD in the Chinese population under an allelic (OR: 1.34, 95 % CI: 1.06–1.71, P = 0.02), recessive (OR: 1. 65, 95 % CI: 1.02–2.69, P = 0.04), dominant (OR: 0.924, 95 % CI: 0.872–0.978, P = 0.007) and homozygous genetic models (OR: 0.968, 95 % CI: 0.942–0.995, P = 0.018). No significant association was found between them under a heterozygous genetic model (OR: 0.979, 95 % CI: 0.937–1.023, P = 0.342). In the whole Chinese population, no significant association between the CETP TaqIB gene polymorphism and CAD was found under an allelic (OR: 1.17, 95 % CI: 0.94–1.45, P = 0.15), dominant (OR: 1.46, 95 % CI: 0.80–2.67, P = 0.22) or recessive genetic models (OR: 0.68, 95 % CI: 0.32–1.44, P = 0.31). However, in the subgroup analysis stratified by ethnicity, there was a significant association between them under an allelic (OR: 1.27, 95 % CI: 1.07–1.52, P = 0.007) and dominant genetic model (OR: 2.04, 95 % CI: 1.49–2.79, P < 0.00001) in the Han subgroup. In the Chinese population, the APO A5 −1131T/C and FgB −455G/A, −148C/T gene polymorphisms were implied to be associated with CAD susceptibility. The APO A5 −1131C, FgB −455A, and −148T alleles might confer susceptibility to CAD. CETP TaqIB gene polymorphism was suggested to be associated with CAD susceptibility in the Chinese Han population. Carriers with B1 allele of CETP TaqIB gene might be predisposed to CAD in the Chinese Han population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Zemel PC, Sowers JR (1990) Relation between lipids and atherosclerosis: epidemiologic evidence and clinical implications. Am J Cardiol 66:7I–12I

    Article  PubMed  CAS  Google Scholar 

  2. Pennacchio LA, Olivier M, Hubacek JA et al (2001) An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 294:169–173

    Article  PubMed  CAS  Google Scholar 

  3. van der Vliet HN, Sammels MG, Leegwater AC et al (2001) Apolipoprotein A–V: a novel apolipoprotein associated with an early phase of liver regeneration. J Biol Chem 276:44512–44520

    Article  PubMed  Google Scholar 

  4. Smith CE, Tucker KL, Lai CQ et al (2010) Apolipoprotein A5 and lipoprotein lipase interact to modulate anthropometric measures in Hispanics of Caribbean origin. Obesity (Silver Spring) 18:327–332

    Article  Google Scholar 

  5. Tousoulis D, Papageorgiou N, Androulakis E et al (2011) Fibrinogen and cardiovascular disease: genetics and biomarkers. Blood 25:239–245

    Article  CAS  Google Scholar 

  6. Thomas A, Lamlum H, Humphries S, Green F (1994) Linkage disequilibrium across the fibrinogen locus as shown by five genetic polymorphisms, G/A-455 (HaeIII), C/T-148 (HindIII/AluI), T/G + 1689 (AvaII), and BclI (beta-fibrinogen) and TaqI (alpha-fibrinogen), and their detection by PCR. Hum Mutat 3:79–81

    Article  PubMed  CAS  Google Scholar 

  7. Genest JJ Jr, Martin-Munley SS, McNamara JR et al (1992) Familial lipoprotein disorders in patients with premature coronary artery disease. Circulation 85:2025–2033

    Article  PubMed  Google Scholar 

  8. Alssema M, El-Harchaoui K, Schindhelm RK et al (2010) Fasting cholesteryl ester transfer protein concentration is independently associated with the postprandial decrease in high-density lipoprotein cholesterol concentration after fat-rich meals: the Hoorn prandial study. Metabolism 59:854–860

    Article  PubMed  CAS  Google Scholar 

  9. Chen SN, Cilingiroglu M, Todd J et al (2009) Candidate genetic analysis of plasma high-density lipoprotein-cholesterol and severity of coronary atherosclerosis. BMC Med Genet 10:111

    Article  PubMed  Google Scholar 

  10. Szalai C, Keszei M, Duba J et al (2004) Polymorphism in the promoter region of the apolipoprotein A5 gene is associated with an increased susceptibility for coronary artery disease. Atherosclerosis 173:109–114

    Article  PubMed  CAS  Google Scholar 

  11. Pennacchio LA, Olivier M, Hubacek JA et al (2002) Two independent apolipoprotein A5 haplotypes influence human plasma triglyceride levels. Hum Mol Genet 11:3031–3038

    Article  PubMed  CAS  Google Scholar 

  12. Endo K, Yanagi H, Araki J et al (2002) Association found between the promoter region polymorphism in the apolipoprotein A–V gene and the serum triglyceride level in Japanese schoolchildren. Hum Genet 111:570–572

    Article  PubMed  CAS  Google Scholar 

  13. Henry I, Uzan G, Weil D et al (1984) The genes coding for A alpha-, B beta-, and gamma-chains of fibrinogen map to 4q2. Am J Hum Genet 36:760–768

    PubMed  CAS  Google Scholar 

  14. Humphries SE, Cook M, Dubowitz M et al (1987) Role of genetic variation at the fibrinogen locus in determination of plasma fibrinogen concentrations. Lancet 1:1452–1455

    Article  PubMed  CAS  Google Scholar 

  15. Ordovas JM (2000) Genetic polymorphisms and activity of cholesterol ester transfer protein (CETP): should we be measuring them? Clin Chem Lab Med 38:945–949

    Article  PubMed  CAS  Google Scholar 

  16. Yilmaz H, Isbir T, Agachan B et al (2005) Effects of cholesterol ester transfer protein Taq1B gene polymorphism on serum lipoprotein levels in Turkish coronary artery disease patients. Cell Biochem Funct 23:23–28

    Article  PubMed  CAS  Google Scholar 

  17. Bi N, Yan SK, Li GP et al (2005) Polymorphisms in the apolipoprotein A5 gene and apolipoprotein C3 gene in patients with coronary artery disease. Chin J Cardiol 33:116–121

    CAS  Google Scholar 

  18. Liu H, Zhang S, Lin JL et al (2005) Association between DNA variant sites in the apolipoprotein A5 gene and coronary heart disease in Chinese. Metabolism 54:568–572

    Google Scholar 

  19. Chen Y, Xu LP, Zhang JQ et al (2011) Study on the relationship between apolipoprotein A5 gene polymorphism and coronary artery disease. Chin J Conval Med 20:487–489

    Google Scholar 

  20. Smith GD, Harbord R, Milton J et al (2005) Does elevated plasma fibrinogen increase the risk of coronary heart disease? Evidence from a meta-analysis of genetic association studies. Arterioscler Thromb Vasc Biol 25:2228–2233

    Article  PubMed  CAS  Google Scholar 

  21. Sun C, Liang L, Li WJ et al (2007) Nucleotide polymorphisms and haplotypes in α- and β-fibrinogen genes and their relationship to coronary heart disease. Chin J Arteriosclerosis 15:699–702

    CAS  Google Scholar 

  22. Zhang YX, Han L, Ma X (2000) Study of correlation of human β-fibrinogen G/A −455 polymorphism and the thrombotic complicationsof atherosclerosis. J Xi’an Med Univ 21:115–118

    Google Scholar 

  23. Ma HL, Ge JB, Wang Y et al (2005) Association of fibrinogen and its gene β148 and β854 polymorphisms with coronary heart disease. Chin J Arteriosclerosis 13:351–354

    CAS  Google Scholar 

  24. Rahimi Z, Nourozi-Rad R, Vaisi-Raygani A et al (2011) Association between cholesteryl ester transfer protein TaqIB variants and risk of coronary artery disease and diabetes mellitus in the population of Western Iran. Genet Test Mol Biomarkers [Epub ahead of print]

  25. Tanrikulu-Kucuk S, Ademoglu E, Gurdol F et al (2010) Cholesteryl ester transfer protein Taq1B polymorphism in an angiographically assessed Turkish population: no effects on coronary artery disease risk. Genet Test Mol Biomarkers 14:637–642

    Article  PubMed  CAS  Google Scholar 

  26. Zhang GB, Jiang ZW, Sun BG et al (2005) Relationship of TaqIB polymorphism in the cholesteryl ester transfer protein gene to coronary artery disease. Chin J Arterioscler 13:88–90

    CAS  Google Scholar 

  27. Zhao SP, Li H, Xiao ZJ, Nie S (2004) The effect of TaqIB polymorphism of cholesteryl ester transfer protein gene on the lipoprotein level. Zhonghua Xin Xue Guan Bing Za Zhi 32:816–818

    Google Scholar 

  28. Cochran WG (1968) The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics 24:295–313

    Article  PubMed  CAS  Google Scholar 

  29. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  PubMed  CAS  Google Scholar 

  30. Mantel N, Haenszel W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22:719–748

    PubMed  CAS  Google Scholar 

  31. Egger M, Davey Smith G, Schneider M et al (1997) Bias in meta-analysis detected by a simple, graphical test. Br Med J 315:629–634

    Article  CAS  Google Scholar 

  32. Tang YB, Sun P, Guo DP et al (2005) Association between apolipoprotein A5–1131T > C polymorphism and susceptibility of coronary artery disease in Chinese. Chin J Med Genet 22:281–283

    CAS  Google Scholar 

  33. Yin SX (2006) A study on the genes single nucleotide polymorphism of apolipoprotein A5 and C3 in patients with coronary artery disease. Qingdao University Press, Qingdao

    Google Scholar 

  34. Qiu F (2007) The association of polymorphisms in apolipoproteina 5 gene with blood lipids and heart cerebrovascular disease. Southeast University Press, Nanjing

    Google Scholar 

  35. Yang F, Ng ZJ, Wang LS (2007) Association of APOA5 gene −1131T > C single nucleotide polymorphism with coronary heart disease among Chinese Han population. Shandong Med J 47:1–3

    Google Scholar 

  36. Yu Y, Xue L, Zhao CY et al (2007) Study on polymorphism in the apolipoprotein A5 gene in patients with premature coronary heart disease. J Peking Univ (Health Sciences) 39:576–580

    CAS  Google Scholar 

  37. Zhang YQ (2007) Associations of apoA 5 polymorphisms, blood lipids and coronary heart disease in the Chinese. Zhejiang University Press, Hangzhou

    Google Scholar 

  38. Xu L, He T (2008) Correlation of apolipoprotein A5 SNP3 gene single nucleotide polymorphism with coronary artery disease in Chinese. Shandong Med J 48:1–3

    CAS  Google Scholar 

  39. Zhao L (2008) Association between apolipoprotein A5–1131 T > C polymorphism and coronary heart disease in xinjiang Uygur. Xinjiang Medical University Press, Wulumuqi

    Google Scholar 

  40. Li FQ, Liu GX, Yang ZG et al (2001) β-fibrinogen −455 gene polymorphism associated with plasma fibrinogen levels in ischemic heart disease. Chin J Gerontol 21:417–419

    Google Scholar 

  41. Gong WX, Cai YM, Peng J et al (2002) Study on the promoter region of β fibrinogen gene polymorphism in patients with coronary heart disease. Chin J Arteriosclerosis 10:140–143

    CAS  Google Scholar 

  42. Jin W, Liu Y, Jiang ZW et al (2002) Relationship between single nucleotide polymorphisms in the 5′-promoter region of beta fibrinogen gene and coronary artery disease: a case-control study in Chinese population. J Diagn Concep Pract 1:224–228

    Google Scholar 

  43. Liu R, Li JZ, Mu H et al (2002) The relationship of beta-fibrinogen gene polymorphisms and ischemic cardiocerebral vascular disease. Chin J Hematol 23:453–456

    CAS  Google Scholar 

  44. Lu CZ, Tian HM, Li YG (2003) Plasma fibrinogen gene β-455G/A polymorphism and plasma fibrinogen level in patients with acute coronary syndromes. Mol Cardiol Chin 3:323–325

    Google Scholar 

  45. Sun H, Zhang W, Lu FH et al (2004) Association of fibrinogen β-455G/A gene polymorphism with hypertension and coronary heart disease. Chin J Arteriosclerosis 12:199–202

    CAS  Google Scholar 

  46. Wang AL, Yu YX, Xu Y et al (2005) Research of association between β fibrinogen gene 455G/A polymorphisms and acute myocardial infarction. Acta Universitatis Medicinalis Anhui 40:238–240

    CAS  Google Scholar 

  47. Wang ZX, Yang XJ, Pan M et al (2007) Association of two polymorphism in the fibrinogen β gene 5′ promoter region with plasma levels and coronary artery disease susceptibility in Chinese population. Jiangsu Med J 33:757–759

    CAS  Google Scholar 

  48. Li Z, Bao J (2008) Association of fibrinogen β-455G/A gene polymorphism with coronary heart disease. Chin J Gerontol 28:2472–2473

    Google Scholar 

  49. Sun A, Ma H, Xu D et al (2009) Association between −455G/A and fibrinogen in a Chinese population. Acta Cardiol 64:357–361

    Article  PubMed  Google Scholar 

  50. Zhang XH, Xu G, Zhao XY et al (2003) Study of fibrinogen β-148C/T gene polymorphism in patients with coronary heart disease and stroke. Chin J Emerg Med 12:683–684

    CAS  Google Scholar 

  51. Kou L, Qin Q, Cui RZ et al (2004) A study on β-fibrinogen-148C/T polymorphism and platelet membrane glycoprotein VIT13254C polymorphism of coronary heart disease. Mol Cardiol China 4:328–334

    Google Scholar 

  52. Zhou S, Zhao LS, Wang HK et al (2009) Relationship between gene polymorphism of fibrinogen 148C/T and coronary heart disease. Shandong Med J 49:10–12

    Google Scholar 

  53. Wang W, Zhou X, Liu F et al (2004) Association of the TaqIB polymorphism and D442G mutation of cholesteryl ester transfer protein gene with coronary heart disease. Zhonghua Xin Xue Guan Bing Za Zhi 32:981–985

    Google Scholar 

  54. Yan SK, Zhu YL, Cheng S et al (2004) Relationship between coronary heart disease and TaqIB, MspI polymorphisms of cholesteryl ester transfer protein gene in Han nationality. Chin J Lab Med 27:671–675

    CAS  Google Scholar 

  55. Hsieh MC, Tien KJ, Chang SJ et al (2007) Cholesteryl ester transfer protein B1B1 genotype as a predictor of coronary artery disease in Taiwanese with type 2 diabetes mellitus. Metabolism 56:745–750

    Article  PubMed  CAS  Google Scholar 

  56. Wang SH, Cui HB, Wang DQ et al (2008) Geographical characteristics of single nucleotide polymorphism of candidate genes associated with coronary artery disease in Chinese Han population. Zhonghua Xin Xue Guan Bing Za Zhi 36:24–29

    PubMed  Google Scholar 

  57. Zhou DF, Yun ML, Zhang Y et al (2010) Dertermination of cholesteryl ester transport protein gene polymorphism in patients with coronal heart disease from Hainan Li nationality. Shandong Med J 50:26–28

    Google Scholar 

  58. Zhang Z, Peng B, Gong RR et al (2011) Apolipoprotein A5 polymorphisms and risk of coronary artery disease: a meta-analysis. Biosci Trends 5:165–172

    Article  PubMed  CAS  Google Scholar 

  59. Hubacek JA, Skodová Z, Adámková V et al (2004) The influence of APOAV polymorphisms (T-1131 > C and S19 > W) on plasma triglyceride levels and risk of myocardial infarction. Clin Genet 65:126–130

    Article  PubMed  CAS  Google Scholar 

  60. Hsu LA, Ko YL, Chang CJ et al (2006) Genetic variations of apolipoprotein A5 gene is associated with the risk of coronary artery disease among Chinese in Taiwan. Atherosclerosis 185:143–149

    Article  PubMed  CAS  Google Scholar 

  61. Yan SK, Cheng XQ, Song YH et al (2005) Apolipoprotein A5 gene polymorphism −1131T–>C: association with plasma lipids and type 2 diabetes mellitus with coronary heart disease in Chinese. Clin Chem Lab Med 43:607–612

    Article  PubMed  CAS  Google Scholar 

  62. Zhai G, Li M, Zhu C (2011) APOA5 −1131T/C polymorphism is associated with coronary artery disease in a Chinese population: a meta-analysis. Clin Chem Lab Med 49:535–539

    PubMed  CAS  Google Scholar 

  63. Brown ET, Fuller GM (1998) Detection of a complex that associates with the Bbeta fibrinogen G-455-A polymorphism. Blood 92:3286–3293

    PubMed  CAS  Google Scholar 

  64. Danesh J, Collins R, Peto R (1997) Chronic infections and coronary heart disease: is there a link? Lancet 350:430–436

    Article  PubMed  CAS  Google Scholar 

  65. Meade TW (1987) Hypercoagulability and ischaemic heart disease. Blood Rev 1:2–8

    Article  PubMed  CAS  Google Scholar 

  66. Luc G, Bard JM, Juhan-Vague I et al (2003) C-reactive protein, interleukin-6, and fibrinogen as predictors of coronary heart disease: the PRIME study. Arterioscler Thromb Vasc Biol 23:1255–1261

    Article  PubMed  CAS  Google Scholar 

  67. Krauss RM (2001) Dietary and genetic effects on LDL heterogeneity. World Rev Nutr Diet 89:12–22

    Article  PubMed  CAS  Google Scholar 

  68. Ordovas JM, Cupples LA, Corella D et al (2000) Association of cholesteryl ester transfer protein-TaqIB polymorphism with variations in lipoprotein subclasses and coronary heart disease risk: the Framingham study. Arterioscler Thromb Vasc Biol 20:1323–1329

    Article  PubMed  CAS  Google Scholar 

  69. Corella D, Carrasco P, Amiano P et al (2010) Common cholesteryl ester transfer protein gene variation related to high-density lipoprotein cholesterol is not associated with decreased coronary heart disease risk after a 10-year follow-up in a Mediterranean cohort: Modulation by alcohol consumption. Atherosclerosis 211:531–538

    Article  PubMed  CAS  Google Scholar 

  70. Kaestner S, Patsouras N, Spathas DH et al (2010) Lack of association between the cholesteryl ester transfer protein gene–TaqIB polymorphism and coronary restenosis following percutaneous transluminal coronary angioplasty and stenting: a pilot study. Angiology 61:338–343

    Article  PubMed  CAS  Google Scholar 

  71. Boekholdt SM, Sacks FM, Jukema JW et al (2005) Cholesteryl ester transfer protein TaqIB variant, high-density lipoprotein cholesterol levels, cardiovascular risk, and efficacy of pravastatin treatment: individual patient meta-analysis of 13,677 subjects. Circulation 111:278–287

    Article  PubMed  CAS  Google Scholar 

  72. Hassanzadeh T, Firoozrai M, Zonouz AE et al (2009) Taq1B polymorphism of cholesteryl ester transfer protein (CETP) gene in primary combined hyperlipidaemia. Indian J Med Res 129:293–298

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (NSFC 81100073 to Dr Yan-yan Li) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). Thank all our colleagues working in the Department of geriatrics, the First Affiliated Hospital of Nanjing Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-yan Li.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Yy., Wu, Xy., Xu, J. et al. Apo A5 −1131T/C, FgB −455G/A, −148C/T, and CETP TaqIB gene polymorphisms and coronary artery disease in the Chinese population: a meta-analysis of 15,055 subjects. Mol Biol Rep 40, 1997–2014 (2013). https://doi.org/10.1007/s11033-012-2257-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2257-9

Keywords

Navigation