Skip to main content
Log in

SVM approach for predicting LogP

  • Full–length paper
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Summary

The logarithm of the partition coefficient between n-octanol and water (logP) is an important parameter for drug discovery. Based upon the comparison of several prediction logP models, i.e. Support Vector Machines (SVM), Partial Least Squares (PLS) and Multiple Linear Regression (MLR), the authors reported SVM model is the best one in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LogP:

the logarithm of the partition coefficient between n-octanol and water

SVM:

support vector machines

PLS:

partial least squares

MLR:

multiple linear regression

References

  1. Mannhold, R. and Dross, K., Calculation procedures for molecular lipophilicity: a comparative study, Quant. Struct.-Act. Relat., 15 (1996) 403–409.

    Article  CAS  Google Scholar 

  2. Testa, B., Crivori, P., Reist, M. and Carrupt, P.A., The influence of lipophilicity on the pharmacokinetic behavior of drugs: Concepts and examples, Perspect. Drug Disc. Design, 19 (2000) 179–211.

    Article  CAS  Google Scholar 

  3. Hansch, C. and Fujita, T., Correlation of biochemical activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients, Nature, 194 (1962) 178–180.

    Article  CAS  Google Scholar 

  4. Leo, A., Calculating logPoct from structures, Chem. Rev., 93 (1993) 1281–1306.

    Article  CAS  Google Scholar 

  5. Suzuki, T. and Kudo, Y., Automatic logP estimation based on combined additive modeling methods, J. Comput.-Aided Mol. Des., 4 (1990) 155–198.

    Article  PubMed  CAS  Google Scholar 

  6. Klopman, G., Li, J.Y., Wang, S. and Dimayuga, M., Computer automated logP calculations based on an extended group contribution approach, J. Chem. Inf. Comput. Sci., 34 (1994) 752–781.

    Article  CAS  Google Scholar 

  7. Wang, R., Fu, Y. and Lai, L., A new atom-additive method for calculating partition coefficients, J. Chem. Inf. Comput. Sci., 37 (1997) 615–621.

    Article  CAS  Google Scholar 

  8. Devillers, J., Domine, D. and Guillon, C., Autocorrelation modeling of lipophilicity with a back-propagation neural network, Eur. J. Med. Chem., 33 (1998) 659–664.

    Article  CAS  Google Scholar 

  9. Mannhold, R. and Petrauskas, A., Substructure versus whole molecule approaches for calculating logP, QSAR Comb. Sci., 22 (2003) 466–475.

    Article  CAS  Google Scholar 

  10. Sun, H., A universal molecular descriptor system for prediction of logP, logS, logBB, and absorption, J. Chem. Inf. Comput. Sci., 44 (2004) 748–757.

    Article  PubMed  CAS  Google Scholar 

  11. Chuman, H., Mori, A., Tanaka, H., Yamagami, C. and Fujita, T., Analyses of the partition coefficient, logP, using ab initio MO parameter and accessible surface area of solute molecules, J. Pharm. Sci., 93 (2004) 2681–2697.

    Article  PubMed  CAS  Google Scholar 

  12. In, Y., Chai, H.H. and No, K.T., A partition coefficient calculation method with the SFED model, J. Chem. Inf. Model., 45 (2005) 254–263.

    Article  PubMed  CAS  Google Scholar 

  13. Schnackenberg, L.K. and Beger, R.D., Whole-molecule calculation of logP based on molar volume, hydrogen bonds, and simulated 13C NMR spectra, J. Chem. Inf. Model., 45 (2005) 360–365.

    Article  PubMed  CAS  Google Scholar 

  14. Vapnik, V.N. (Ed.) Statistical Learning Theory, John Wiley & Sons, New York, 1998.

    Google Scholar 

  15. Cristianini, N. and Shawe-Taylor, J. (Eds.) An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK, 2000.

    Google Scholar 

  16. Burges, C.J.C., A tutorial on Support Vector Machine for pattern recognition, Data Min. Knowl. Disc., 2 (1998) 121–167.

    Article  Google Scholar 

  17. Burbidge, R., Trotter, M., Buxton, B. and Holden, S., Drug design by machine learning: Support Vector Machines for pharmaceutical data analysis, Comput. Chem., 26 (2001) 5–14.

    Article  PubMed  CAS  Google Scholar 

  18. Song, M., Breneman, C.M., Bi, J.; Sukumar, N., Bennett, K.P., Cramer, S. and Tugcu, N., Prediction of protein retention times in anion-exchange chromatography systems using Support Vector Regression, J. Chem. Inf. Comput. Sci., 42 (2002) 1347–1357.

    Article  PubMed  CAS  Google Scholar 

  19. Kramer, S., Frank, E. and Helma, C., Fragment generation and Support Vector Machines for inducing SARs, SAR QSAR Environ. Res., 13 (2002) 509–523.

    Article  PubMed  CAS  Google Scholar 

  20. Zernov, V.V., Balakin, K.V., Ivaschenko, A.A., Savchuk, N.P. and Pletnev, I.V., Drug discovery using Support Vector Machines. The case studies of drug-likeness, agrochemical-likeness, and enzyme inhibition predictions, J. Chem. Inf. Comput. Sci., 43 (2003) 2048–2056.

    Article  PubMed  CAS  Google Scholar 

  21. Yao, X.J., Panaye, A., Doucet, J.P., Zhang, R.S., Chen, H.F., Liu, M.C., Hu, Z.D. and Fan, B.T., Comparative study of QSAR/QSPR correlations using Support Vector Machines, Radial Basis Function Neural Networks, and Multiple Linear Regression, J. Chem. Inf. Comput. Sci., 44 (2004) 1257–1266.

    Article  PubMed  CAS  Google Scholar 

  22. Luan, F., Zhang, R.S., Zhao, C.Y., Yao, X.J., Liu, M.C., Hu, Z.D. and Fan, B.T., Classification of the carcinogenicity of N-nitroso compounds based on Support Vector Machines and Linear Discriminant Analysis, Chem. Res. Toxicol., 18 (2005) 198–203.

    Article  PubMed  CAS  Google Scholar 

  23. Hansch, C., Leo, A. and Hoekman, D. (Eds.) Exploring QSAR: Hydrophobic, Electronic, and Steric Constants, Vol 2, American Chemical Society, Washington, DC, 1995.

    Google Scholar 

  24. Zefirov, N.S. and Palyulin, V.A., Fragmental approach in QSPR, J. Chem. Inf. Comput. Sci., 42 (2002) 1112–1122.

    Article  PubMed  CAS  Google Scholar 

  25. Hurst T. and Heritage T., HQSAR — A highly predictive QSAR technique based on molecular holograms, 213th ACS Natl. Meeting, San Francisco, CA, (1997), CINF 019.

  26. Merlot, C., Domine, D., Cleva, C. and Church, D.J., Chemical substructures in drug discovery. Drug, Discovery Today, 8 (2003) 594–602.

    Article  CAS  Google Scholar 

  27. Clark, M., Generalized fragment-substructure based property prediction method, J. Chem. Inf. Model, 45 (2005) 30–38.

    Article  PubMed  CAS  Google Scholar 

  28. Liao, Q., Yao, J.H., Li, F., Yuan, S.G., Doucet, J.P., Panaye, A. and Fan, B.T., CISOC-PSCT: A predictive system for carcinogenic toxicity, SAR QSAR Environ. Res., 15 (2004) 217–235.

    Article  PubMed  CAS  Google Scholar 

  29. Eriksson, L., Johansson, E., Kettaneh-Wold, N. and Wold, S. (Ed.) Multi- and Megavariate Data Analysis Principles and Applications, Umetrics Academy: Kinnelon, NJ, 2001.

    Google Scholar 

  30. ftp://dasher.wustl.edu/pub/qsar/.

  31. Topliss, J.G. and Edwards, R.P., Chance factors in studies of quantitative structure-activity relationships, J. Med. Chem., 22 (1979) 1238–1244.

    Article  PubMed  CAS  Google Scholar 

  32. Press, W.H., Teukolsky, S.A., Vetterling, W.T. and Flannery, B.P. (Eds.) Numerical Recipes in C: the Art of Scientific Computing, 2nd Ed., Cambridge University Press, Cambridge, 1995, 676–681.

    Google Scholar 

  33. Chang, C.C. and Lin, C.J., LIBSVM – A library for Support Vector Machines, http://www.csie.ntu.edu.tw/$\sim$cjlin/libsvm/index.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liao, Q., Yao, J. & Yuan, S. SVM approach for predicting LogP. Mol Divers 10, 301–309 (2006). https://doi.org/10.1007/s11030-006-9036-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-006-9036-2

Key words

Navigation