Skip to main content
Log in

Dimerization of the cardiac ankyrin protein CARP: Implications for MARP titin-based signaling

  • Published:
Journal of Muscle Research & Cell Motility Aims and scope Submit manuscript

Abstract

Cardiac ankyrin repeat protein (CARP) and its two close homologs ankrd2 (Arpp) and DARP correspond to a conserved gene family of muscle ankyrin repeat proteins (MARPs). All three genes respond to a variety of stress/strain injury signals with their cytokine-like induction and can associate with the elastic region of titin/connectin. Recently, both CARP and ankrd2 were observed to be elevated in cardiac diseases as well as muscular dystrophies, implicating their joined signaling in muscle diseases. Here we show that CARP in the yeast two-hybrid system (YTH) interacts with itself and desmin. To further verify the YTH data and to investigate possible CARP subunit structure(s), we expressed CARP in E. coli. Expressed CARP has an apparent mobility of about 70 kDa on gel filtration, corresponding to a dimeric species. Yeast two-hybrid experiments using amino- and carboxyterminal deletion clones suggest that CARP, ankrd2, and DARP contain potential coiled-coil dimerization motifs within their unique aminoterminal domains that mediate the formation of homo-dimers. In contrast, we could not detect the formation of hetero-dimers between CARP, ankrd2, and DARP. Therefore, when CARP, ankrd2 and DARP are upregulated in disease/stress states, they are likely to be sorted into distinct structural protein complexes since CARP within the MARP family contains a unique aminoterminal dimerization motif.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arber S, Hunter JJ, Ross J Jr, Hongo M, Sansig G, Borg J, Perriard JC, Chien KR, Caroni P, (1997) MLP-deficient mice exhibit a disruption of cardiac cytoarchitectural organization, dilated cardiomyopathy, and heart failure Cell 88:393–403

    Article  PubMed  CAS  Google Scholar 

  • Bakay M, Zhao P, Chen J, Hoffman EP, (2002) A web-accessible complete transcriptome of normal human and DMD muscle Neuromuscul Disord 12:S125–141

    Article  PubMed  Google Scholar 

  • Bang ML, Mudry RE, McElhinny AS, Trombitas K, Geach AJ, Yamasaki R, Sorimachi H, Granzier H, Gregorio CC, Labeit S, (2001) Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies J Cell Biol 153:413–427

    Article  PubMed  CAS  Google Scholar 

  • Barash IA, Mathew L, Ryan AF, Chen J, Lieber RL, (2004) Rapid muscle-specific gene expression changes after a single bout of eccentric contractions in the mouse Am J Physiol Cell Physiol 286:C355–C364

    Article  PubMed  CAS  Google Scholar 

  • Baumeister A, Arber S, Caroni P, (1997) Accumulation of muscle ankyrin repeat protein transcript reveals local activation of primary myotube endcompartments during muscle morphogenesis J Cell Biol 139:1231–1242

    Article  PubMed  CAS  Google Scholar 

  • Centner T, Yano J, Kimura E, McElhinny AS, Pelin K, Witt CC, Bang ML, Trombitas K, Granzier H, Gregorio CC, Sorimachi H, Labeit S, (2001) Identification of muscle specific ring finger proteins as potential regulators of the titin kinase domain J Mol Biol 306:717–726

    Article  PubMed  CAS  Google Scholar 

  • Clark KA, McElhinny AS, Beckerle MC, Gregorio CC, (2002). Striated muscle cytoarchitecture: an intricate web of form and function Annu Rev Cell Dev Biol 18:637–706

    Article  PubMed  CAS  Google Scholar 

  • Dubendorff JW, Studier FW, (1991) Creation of a T7 autogene. Cloning and expression of the gene for bacteriophage T7 RNA polymerase under control of its cognate promoter J Mol Biol 219:61–68

    Article  PubMed  CAS  Google Scholar 

  • Granzier H, Labeit S, (2004) The giant protein titin: a major player in myocardial mechanics, signaling, and disease Circ Res 94:284–295

    Article  PubMed  CAS  Google Scholar 

  • Gregorio CC, Trombitas K, Centner T, Kolmerer B, Stier G, Kunke K, Suzuki K, Obermayer F, Herrmann B, Granzier H, Sorimachi H, Labeit S, (1998) The NH2 terminus of titin spans the Z-disc; Its interaction with a novel 19 kD ligand (T-cap) is required for sarcomeric integrity J Cell Biol 143:1013–1027

    Article  PubMed  CAS  Google Scholar 

  • Ishiguro N, Baba T, Ishida T, Takeuchi K, Osaki M, Araki N, Okada E, Takahashi S, Saito M, Watanabe M, Nakada C, Tsukamoto Y, Sato K, Ito K, Fukayama M, Mori S, Ito H, Moriyama M. (2002) Carp, a cardiac ankyrin-repeated protein, and its new homologue, Arpp, are differentially expressed in heart, skeletal muscle, and rhabdomyosarcomas Am J Pathol 160:1767–1778

    PubMed  CAS  Google Scholar 

  • Ikeda K, Emoto N, Matsuo M, Yokoyama M, (2003) Molecular identification and characterization of a novel nuclear protein whose expression is up-regulated in insulin-resistant animals J Biol Chem 278:3514–3520

    Article  PubMed  CAS  Google Scholar 

  • Jeyaseelan R, Poizat C, Baker RK, Abdishoo S, Isterabadi LB, Lyons GE, Kedes LA, (1997) A novel cardiac-restricted target for doxorubicin. CARP, a nuclear modulator of gene expression in cardiac progenitor cells and cardiomyocytes J Biol Chem 272:22800–22808

    Article  PubMed  CAS  Google Scholar 

  • Kemp TJ, Sadusky TJ, Saltisi F, Carey N, Moss J, Yang SY, Sassoon DA, Goldspink G, Coulton GR, (2000) Identification of Ankrd2, a novel skeletal muscle gene coding for a stretch-responsive ankyrin-repeat protein Genomics 66:229–241

    Article  PubMed  CAS  Google Scholar 

  • Knöll R, Hoshijima M, Hoffman HM, Person V, Lorenzen-Schmidt I, Bang ML, Hayashi T, Shiga N, Yasukawa H, Schaper W, McKenna W, Yokoyama M, Schork NJ, Omens JH, McCulloch AD, Kimura A, Gregorio CC, Poller W, Schaper J, Schultheiss HP, Chien KR, (2002) The cardiac mechanical stretch sensor machinery involves a Z disc complex that is defective in a subset of human dilated cardiomyopathy Cell 111:943–955

    Article  PubMed  Google Scholar 

  • Maruyama K, (1997) Connectin/titin, giant elastic protein of muscle FASEB J 11:341–345

    PubMed  CAS  Google Scholar 

  • Miller MK, Bang ML, Witt CC, Labeit D, Trombitas K, Watanabe K, Granzier H, Gregorio CC, Labeit S, (2003) The muscle ankyrin repeat proteins: CARP, ankrd2/Arpp and DARP as a family of titin filament based stress response molecules J Mol Biol 333:951–964

    Article  PubMed  CAS  Google Scholar 

  • Miller MK, Granzier H, Ehler E, Gregorio CC, (2004) The sensitive giant: the role of titin-based stretch sensing complexes in the heart Trends Cell Biol 14:119–126

    Article  PubMed  CAS  Google Scholar 

  • Mues A, van der Ven PFM, Young P, Fürst DO, Gautel M, (1998) Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin FEBS Lett 428:111–114

    Article  PubMed  CAS  Google Scholar 

  • Nagueh SF, Shah G, Wu Y, Torre-Amione G, King NM, Lahmers S, Witt CC, Becker K, Labeit S, Granzier HL, (2004) Altered titin expression, myocardial stiffness, and left ventricular function in patients with dilated cardiomyopathy Circulation 110:155–162

    Article  PubMed  CAS  Google Scholar 

  • Nakada C, Tsukamoto Y, Oka A, Nonaka I, Takeda S, Sato K, Mori S, Ito H, Moriyama M, (2003) Cardiac-restricted ankyrin-repeat protein is differentially induced in duchenne and congenital muscular dystrophy Lab Invest 83:711–719

    PubMed  CAS  Google Scholar 

  • Peters D, Barash IA, Burdi M, Yuan PS, Mathew L, Friden J, Lieber RL, (2003) Asynchronous functional, cellular and transcriptional changes after a bout of eccentric exercise in the rat J Physiol 553:947–957

    Article  PubMed  CAS  Google Scholar 

  • Porter JD, Khanna S, Kaminski HJ, Rao JS, Merriam AP, Richmonds CR, Leahy P, Li J, Guo W, Andrade FH, (2002) A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice Hum Mol Genet 11:263–72

    Article  PubMed  CAS  Google Scholar 

  • Ravulapalli R, Garcia Diaz B, Campbell RL and Davies PL (2005) Homodimerization of calpain 3 penta-EF-hand domain. Biochem J 388:585–591

    Article  PubMed  CAS  Google Scholar 

  • Sepulveda JL, Vlahopoulos S, Iyer D, Belaguli N, Schwartz RJ, (2002) Combinatorial expression of GATA4, Nkx2-5, and serum response factor directs early cardiac gene activity J Biol Chem 277:25775–25782

    Article  PubMed  CAS  Google Scholar 

  • Sorimachi H, Kinbara K, Kimura S, Takahashi M, Ishiura S, Sasagawa N, Sorimachi N, Shimada H, Tagawa K, Maruyama K, Suzuki K, (1995) Muscle-specific calpain, p94, responsible for limb girdle muscular dystrophy type 2A, associates with connectin through IS2, a p94-specific sequence J Biol Chem 270:31158–31162

    Article  PubMed  CAS  Google Scholar 

  • Squire JM, (1997) Architecture and function in the muscle sarcomere Curr Opin Struct Biol 7:247–257

    Article  PubMed  CAS  Google Scholar 

  • Tskhovrebova L, Trinick J, (2003) Titin: properties and family relationships Nat Rev Mol Cell Biol 4:679–689

    Article  PubMed  CAS  Google Scholar 

  • Toko H, Zhu W, Takimoto E, Shiojima I, Hiroi Y, Zou Y, Oka T, Akazawa H, Mizukami M, Sakamoto M, Terasaki F, Kitaura Y, Takano H, Nagai T, Nagai R, Komuro I, (2002) Csx/Nkx2-5 is required for homeostasis and survival of cardiac myocytes in the adult heart J Biol Chem 277:24735–24743

    Article  PubMed  CAS  Google Scholar 

  • Vicart P, Dupret JM, Hazan J, Li Z, Gyapay G, Krishnamoorthy R, Weissenbach J, Fardeau M, Paulin D, (1996) Human desmin gene: cDNA sequence, regional localization and exclusion of the locus in a familial desmin-related myopathy Hum Genet 98:422–429

    Article  PubMed  CAS  Google Scholar 

  • Wanker EE, Rovira C, Scherzinger E, Hasenbank R, Walter S, Tait D, Colicelli J, Lehrach H, (1997) HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system Hum Mol Genet 6:487–495

    Article  PubMed  CAS  Google Scholar 

  • Watanabe K, Nair P, Labeit D, Kellermayer MS, Greaser M, Labeit S, Granzier H, (2002b) Molecular mechanics of cardiac titin’s PEVK and N2B spring elements J Biol Chem 277:11549–11558

    Article  PubMed  CAS  Google Scholar 

  • Way M, Gooch J, Pope B, Weeds AG, (1989) Expression of human plasma gelsolin in Escherichia coli and dissection of actin binding sites by segmental deletion mutagenesis J Cell Biol 109:593–605

    Article  PubMed  CAS  Google Scholar 

  • Witt CC, Ono Y, Puschmann E, McNabb M, Wu Y, Gotthardt M, Witt SH, Haak M, Labeit D, Gregorio CC, Sorimachi H, Granzier H, Labeit S. (2004) Induction and myofibrillar targeting of CARP, and suppression of the Nkx2.5 pathway in the MDM mouse with impaired titin-based signaling J Mol Biol 336:145–154

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Bell SP, Trombitas K, Witt CC, Labeit S, LeWinter MM, Granzier H, (2002). Changes in titin isoform expression in pacing-induced cardiac failure give rise to increased passive muscle stiffness Circulation 106:1384–1389

    Article  PubMed  CAS  Google Scholar 

  • Zou Y, Evans S, Chen J, Kuo HC, Harvey RP, Chien KR, (1997). CARP, a cardiac ankyrin repeat protein, is downstream in the Nkx2-5 homeobox gene pathway Development 124:793–800

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Richard Carmouche from the EMBL gene core for expert technical assistance. This work was supported by the Deutsche Forschungsgemeinschaft (LA668/7-2 to SL and LA1969/1-1 to DL).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witt, S.H., Labeit, D., Granzier, H. et al. Dimerization of the cardiac ankyrin protein CARP: Implications for MARP titin-based signaling. J Muscle Res Cell Motil 26, 401–408 (2005). https://doi.org/10.1007/s10974-005-9022-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-005-9022-9

Keywords

Navigation