Skip to main content
Log in

Ca2+-dependent nonspecific permeability of the inner membrane of liver mitochondria in the guinea fowl (Numida meleagris)

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

This comparative study presents the results of the induction of Ca2+-dependent nonspecific permeability of the inner membrane (pore opening) of rat and guinea fowl liver mitochondria by mechanisms that are both sensitive and insensitive to cyclosporin A (CsA). It was established that energized rat and guinea fowl liver mitochondria incubated with 1 mM of inorganic phosphate (Pi) are capable of swelling upon addition of at least 125 and 875 nmol of CaCl2 per 1 mg protein, respectively. Under these conditions, the Ca2+ release from the mitochondria of these animals and a drop in Δψ are observed. All of these processes are inhibited by 1 μM of CsA. FCCP, causing organelle de-energization, induces pore opening in rat and guinea fowl liver mitochondria upon addition of 45 и 625 nmol of CaCl2 per 1 mg protein, respectively. These results suggest the existence of a CsA-sensitive mechanism for the induction of Ca2+-dependent pores in guinea fowl liver mitochondria, which has been reported in rat liver mitochondria. However, guinea fowl liver mitochondria have a significantly greater resistance to Ca2+ as a pore inducer compared to rat liver mitochondria. It was found that the addition of α,ω-hexadecanedioic acid (HDA) to rat and guinea fowl liver mitochondria incubated with CsA and loaded with Ca2+ causes organelle swelling and Ca2+ release from the matrix. It is assumed that in contrast to the CsA-sensitive pore, the CsA-insensitive pore induced by HDA in the inner membrane of guinea fowl liver mitochondria, as well as in rat liver mitochondria, is lipid in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HDA:

α,ω-hexadecanedioic acid

CRC:

calcium retention capacity

TPP+ :

tetraphenylphosphonium

CsA:

cyclosporin A

Pi :

inorganic phosphate

Δψ:

transmembrane electric potential

References

  • Agafonov AV, Gritsenko EN, Shlyapnikova EN, Kharakoz DP, Belosludtseva NV, Lezhnev EI, Saris NE, Mironova GD (2007) Ca2+-induced phase separation in the membrane of palmitate-containing liposomes and its possible relation to membrane permeabilization. J Membr Biol 215:57–68

    Article  CAS  Google Scholar 

  • Azzolin L, von Stockum S, Basso E, Petronilli V, Forte MA, Bernardi P (2010) The mitochondrial permeability transition from yeast to mammals. FEBS Lett 584:2504–2509

    Article  CAS  Google Scholar 

  • Basso E, Petronilli V, Forte MA, Bernardi P (2008) Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J Biol Chem 283:26307–26311

    Article  CAS  Google Scholar 

  • Belosludtsev KN, Saris NE, Belosludtseva NV, Trudovishnikov AS, Lukyanova LD, Mironova GD (2009) Physiological aspects of the mitochondrial cyclosporin A-insensitive palmitate/Ca2 + −induced pore: tissue specificity, age profile and dependence on the animal’s adaptation to hypoxia. J Bioenerg Biomembr 41:395–401

    Article  CAS  Google Scholar 

  • Bodrova ME, Dedukhova VI, Samartsev VN, Mokhova EN (2000) Role of the ADP/ATP-antiporter in fatty acid-induced uncoupling of Ca2+-loaded rat liver mitochondria. IUBMB Life 50:189–194

    Article  CAS  Google Scholar 

  • Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12:674–683

    Article  CAS  Google Scholar 

  • Chalmers S, Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278:19062–19070

    Article  CAS  Google Scholar 

  • Chance B, Williams GR (1955) Respiratory enzymes in oxidative phosphorylation: III. The steady state. J Biol Chem 217:409–427

    CAS  Google Scholar 

  • Di Paola M, Lorusso M (2006) Interaction of free fatty acids with mitochondria: Coupling, uncoupling and permeability transition. Biochim Biophys Acta 1757:1330–1337

    Article  Google Scholar 

  • Dubinin MV, Adakeeva SI, Samartsev VN (2013) Long-chain α, ω-dioic acids as inducers of cyclosporin A-insensitive nonspecific permeability of the inner membrane of liver mitochondria loaded with calcium or strontium ions. Biochem Mosc 78:412–417

    Article  CAS  Google Scholar 

  • Dubinin MV, Samartsev VN, Astashev ME, Kazakov AS, Belosludtsev KN (2014) A permeability transition in liver mitochondria and liposomes induced by α, ω-dioic acids and Ca(2+). Eur Biophys J 43:565–572

    Article  CAS  Google Scholar 

  • Furness LJ, Speakman JR (2008) Energetics and longevity in birds. Age (Dordr) 30:75–87

    Article  CAS  Google Scholar 

  • Gellerich FN, Gizatullina Z, Gainutdinov T, Muth K, Seppet E, Orynbayeva Z, Vielhaber S (2013) The control of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal. IUBMB Life 65:180–190

    Article  CAS  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892

    Article  CAS  Google Scholar 

  • Hinkle PC, Yu ML (1979) The phosphorus/oxygen ratio of mitochondrial oxidative phosphorylation. J Biol Chem 254:2450–2455

    CAS  Google Scholar 

  • Hulbert AJ, Pamplona R, Buffenstein R, Buttemer WA (2007) Life and death: metabolic rate, membrane composition, and life span of animals. Physiol Rev 87:1175–1213

    Article  CAS  Google Scholar 

  • Kamo N, Muratsugu M, Hondoh R, Kobatake Y (1979) Membrane potential of mitochondria measured with an electrode sensitive to tetraphenyl phosphonium and relationship between proton electrochemical potential and phosphorylation potential in steady state. J Membr Biol 49:105–121

    Article  CAS  Google Scholar 

  • Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787:1395–1401

    Article  CAS  Google Scholar 

  • Leung AW, Varanyuwatana P, Halestrap AP (2008) The mitochondrial phosphate carrier interacts with cyclophilin D and may play a key role in the permeability transition. J Biol Chem 283:26312–26323

    Article  CAS  Google Scholar 

  • Malhi H, Guicciardi ME, Gores GJ (2010) Hepatocyte death: a clear and present danger. Physiol Rev 90:1165–1194

    Article  CAS  Google Scholar 

  • Markova OV, Bondarenko DI, Samartsev VN (1999) The anion-carrier mediated uncoupling effect of dicarboxylic fatty acids in liver mitochondria depends on the position of the second carboxyl group. Biochem Mosc 64:565–570

    CAS  Google Scholar 

  • Mironova GD, Gritsenko E, Gateau-Roesch O, Levrat C, Agafonov A, Belosludtsev K, Prigent A, Muntean D, Dubois M, Ovize M (2004) Formation of palmitic acid/Ca2+ complexes in the mitochondrial membrane: a possible role in the cyclosporin-insensitive permeability transition. J Bioenerg Biomembr 36:171–178

    Article  CAS  Google Scholar 

  • Novgorodov SA, Gudz TI, Obeid LM (2008) Long-chain ceramide is a potent inhibitor of the mitochondrial permeability transition pore. J Biol Chem 283:24707–24717

    Article  CAS  Google Scholar 

  • Petronilli V, Cola C, Massari S, Colonna R, Bernardi P (1993) Physiological effectors modify voltage sensing by the cyclosporin A-sensitive permeability transition pore of mitochondria. J Biol Chem 268:21939–21945

    CAS  Google Scholar 

  • Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca(2+)-dependent apoptosis and necrosis. Cell Calcium 50:222–233

    Article  CAS  Google Scholar 

  • Samartsev VN, Vedernikov AA, Dubinin MV, Zabiyakin VA (2014) Comparative study of free oxidation in liver mitochondria of “wild” gray-speckled population and productive domestic breeds of guinea fowl (Numida meleagris). J Evol Biochem Physiol 50:181–183

    Article  Google Scholar 

  • Schönfeld P, Bohnensack R (1997) Fatty acid-promoted mitochondrial permeability transition by membrane depolarization and binding to the ADP/ATP carrier. FEBS Lett 420:167–170

    Article  Google Scholar 

  • Scorrano L, Petronilli V, Bernardi P (1997) On the voltage dependence of the mitochondrial permeability transition pore. A critical appraisal. J Biol Chem 272:12295–12299

    Article  CAS  Google Scholar 

  • Siemen D, Ziemer M (2013) What is the nature of the mitochondrial permeability transition pore and what is it not? IUBMB Life 65:255–262

    Article  CAS  Google Scholar 

  • Speakman JR (2005) Body size, energy metabolism and lifespan. J Exp Biol 208:1717–1730

    Article  Google Scholar 

  • Sultan A, Sokolove P (2001a) Palmitic acid opens a novel cyclosporin A-insensitive pore in the inner mitochondrial membrane. Arch Biochem Biophys 386:37–51

    Article  CAS  Google Scholar 

  • Sultan A, Sokolove P (2001b) Free fatty acid effects on mitochondrial permeability: an overview. Arch Biochem Biophys 386:52–61

    Article  CAS  Google Scholar 

  • Toninello A, Salvi M, Colombo L (2000) The membrane permeability transition in liver mitochondria of the great green goby Zosterisessor ophiocephalus (Pallas). J Exp Biol 203:3425–3434

    CAS  Google Scholar 

  • Varanyuwatana P, Halestrap AP (2012) The roles of phosphate and the phosphate carrier in the mitochondrial permeability transition pore. Mitochondrion 12:120–125

    Article  CAS  Google Scholar 

  • Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res 83:213–225

    Article  CAS  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Russian Foundation for Basic Research (project No. 14-04-00688-a) and partially supported by the Ministry of Education and Science of the Russian Federation (project No. 1365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail V. Dubinin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedernikov, A.A., Dubinin, M.V., Zabiakin, V.A. et al. Ca2+-dependent nonspecific permeability of the inner membrane of liver mitochondria in the guinea fowl (Numida meleagris). J Bioenerg Biomembr 47, 235–242 (2015). https://doi.org/10.1007/s10863-015-9606-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9606-z

Keywords

Navigation