Skip to main content
Log in

Silkworm and spider silk scaffolds for chondrocyte support

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Objective To create scaffolds with silkworm cocoon, spider egg sac and spider dragline silk fibres and examine their use for chondrocyte attachment and support. Methods Three different kinds of scaffolds were developed with Bombyx mori cocoon, Araneus diadematus egg sac and dragline silk fibres. The attachment of human articular cartilage cells were investigated on these bioprotein matrices. The chondrocytes produced an extracellular matrix which was studied by immunostaining. Moreover, the compression behaviour in relation to the porosity was studied. Results The compression modulus of a silkworm silk scaffold was related to its porosity. Chondrocytes were able to attach and to grow on the different fibres and in the scaffolds for several weeks while producing extracellular matrix products. Conclusion Porous scaffolds can be made out of silkworm and spider silk for cartilage regeneration. Mechanical properties are related to porosity and pore size of the construct. Cell spreading and cell expression depended on the porosity and pore-size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Aroen, S. Loken, S. Heir, E. Alvik, A. Ekeland, O.G. Granlund, Articular cartilage lesions in 993 consecutive knee arthroscopies. Am. J. Sports Med. 32, 211–215 (2004)

    Article  Google Scholar 

  2. J.A. Buckwalter, H.J. Mankin, Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr. Course Lect. 47, 487–504 (1998)

    CAS  Google Scholar 

  3. E.B. Hunziker, Articular cartilage repair: basic science and clinical progress. A review of the current status and prospects. Osteoarthr. Cartilage 10, 432–463 (2002)

    Article  CAS  Google Scholar 

  4. L.A. Solchaga, V.M. Goldberg, A.I. Caplan, Cartilage regeneration using principles of tissue engineering. Clin. Orthop. 391(Suppl), S161–S170 (2001)

    Google Scholar 

  5. L. Peterson, T. Minas, M. Brittberg, A. Nilsson, E. Sjogren-Jansson, A. Lindahl, Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res. 374, 212–234 (2000)

    Article  Google Scholar 

  6. M. Brittberg, L. Peterson, E. Sjogren-Jansson, T. Tallheden, A. Lindahl, Articular cartilage engineering with autologous chondrocyte transplantation. A review of recent developments. J. Bone Joint Surg. Am. 85(A Suppl 3), 109–115 (2003)

    Google Scholar 

  7. A. Ferruzzi, P. Calderoni, B. Grigolo, G. Gualtieri, Autologous articular chondrocytes implantation: indications and results in the treatment of articular cartilage lesions of the knee. Chir. Organi. Mov. 89, 125–134 (2004)

    CAS  Google Scholar 

  8. R.D. Coutts, R.M. Healey, R. Ostrander, R.L. Sah, R. Goomer, D. Amiel, Matrices for cartilage repair. Clin. Orthop. 391(Suppl), S271–S279 (2001)

    Google Scholar 

  9. L. Lu, X. Zhu, R.G. Valenzuela, B.L. Currier, M.J. Yaszemski, Biodegradable polymer scaffolds for cartilage tissue engineering. Clin. Orthop. 391(Suppl), S251–S270 (2001)

    Google Scholar 

  10. L. Galois, A.M. Freyria, L. Grossin, P. Hubert, D. Mainard, D. Herbage, J.F. Stoltz, P. Netter, E. Dellacherie, E. Payan, Cartilage repair: surgical techniques and tissue engineering using polysaccharide- and collagen-based biomaterials. Biorheology 41, 433–443 (2004)

    CAS  Google Scholar 

  11. A. Subramanian, H.Y. Lin, D. Vu, G. Larsen, Synthesis and evaluation of scaffolds prepared from chitosan fibres for potential use in cartilage tissue engineering. Biomed. Sci. Instrum. 40, 117–122 (2004)

    CAS  Google Scholar 

  12. D.L. Nettles, T.P. Vail, M.T. Morgan, M.W. Grinstaff, L.A. Setton, Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Ann. Biomed. Eng. 32, 391–397 (2004)

    Article  Google Scholar 

  13. W. Xia, W. Liu, L. Cui, Y. Liu, W. Zhong, D. Liu, J. Wu, K. Chua, Y. Cao, Tissue engineering of cartilage with the use of chitosan-gelatin complex scaffolds. J. Biomed. Mater. Res. 15, 373–380 (2004)

    Article  Google Scholar 

  14. N. Veilleux, M. Spector, Effects of FGF-2 and IGF-1 on adult canine articular articular chondrocytes in type II collagen-glycosaminoglycan scaffolds in vitro. Osteoarthr. Cartilage 13, 278–286 (2005)

    Article  CAS  Google Scholar 

  15. Z. Ma, C. Gao, Y. Gong, J. Shen, Cartilage tissue engineering PLLA scaffold with surface immobilized collagen and basic fibroblast growth factor. Biomaterials 26, 1253–1259 (2005)

    Article  CAS  Google Scholar 

  16. P.M. van der Kraan, P. Buma, T. van Kuppevelt, W.B. van den Berg, Interaction of articular chondrocytes, extracellular matrix and growth factors: relevance for articular cartilage tissue engineering. Osteoarthr. Cartilage 10, 631–637 (2002)

    Article  Google Scholar 

  17. J.M. Moran, D. Pazzano, L.J. Bonassar, Characterization of polylactic acid-polyglycolic acid composites for cartilage tissue engineering. Tissue Eng. 9, 63–70 (2003)

    Article  CAS  Google Scholar 

  18. K.F. Almqvist, L. Wang, J. Wang, D. Baeten, M. Cornelissen, R. Verdonk, E.M. Veys, G. Verbruggen, Culture of articular chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks. Ann. Rheum. Dis. 60, 781–790 (2001)

    Article  CAS  Google Scholar 

  19. S. Hsu, S. Wen Whu, S. Hsieh, C. Tsai, D. Chanhen Chen, T. Tan, Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration. Artif. Organs 28, 693–703 (2004)

    Article  CAS  Google Scholar 

  20. G.H. Altman, R.L. Horan, H.H. Lu, J. Moreau, I. Martin, J.C. Richmond, D.L. Kaplan, Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23, 4131–4141 (2002)

    Article  CAS  Google Scholar 

  21. C.M. Wen, S.T. Ye, L.X. Zhou, Y. Yu, Silk-induced asthma in children: a report of 64 cases. Ann. Allergy 65, 375–378 (1990)

    CAS  Google Scholar 

  22. M. Santin, A. Motta, G. Freddi, M. Cannas, In vitro evaluation of the inflammatory potential of the silk fibroin. J. Biomed. Mater. Res. 46, 382–389 (1999)

    Article  CAS  Google Scholar 

  23. B. Panilaitis, G.H. Altman, J. Chen, H.J. Jin, V. Karageorgiou, D.L. Kaplan, Macrophage responses to silk. Biomaterials 24, 3079–3085 (2003)

    Article  CAS  Google Scholar 

  24. R.L. Horan, K. Antle, A.L. Collette, Y. Wang, J. Huang, J.E. Moreau, V. Volloch, D.L. Kaplan, G.H. Altman, In vitro degradation of silk fibroin. Biomaterials 26, 3385–3393 (2005)

    Article  CAS  Google Scholar 

  25. N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada, Y. Imai, Attachment and growth of cultured fibroblast cells on silk protein matrices. J. Biomed. Mater. Res. 29, 1215–1221 (1995)

    Article  CAS  Google Scholar 

  26. M.Z. Li, S.Z. Lu, Z.Y. Wu, Study on porous silk fibroin materials 1: fine structure of freeze-dried silk fibroin. J. Appl. Polym. Sci. 79, 2185–2191 (2001)

    Article  CAS  Google Scholar 

  27. M.Z. Li, Z. Wu, C. Zhang, S. Lu, H. Yan, D. Huang, H. Ye, Study on porous silk fibroin materials II. Preparation and characteristics of spongy porous silk fibroin materials. J. Appl. Polym. Sci. 79, 2192–2199 (2001)

    Article  Google Scholar 

  28. R. Nazarov, H.J. Jin, D.L. Kaplan, Porous 3-D scaffolds from regenerated silk fibroin. Biomacromolecules 5, 718–726 (2004)

    Article  CAS  Google Scholar 

  29. U.J. Kim, J. Park, H.J. Kim, M. Wada, D.L. Kaplan, Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26, 2775–2785 (2005)

    Article  CAS  Google Scholar 

  30. F. Vollrath, Biology of spider silk. Int. J. Biol. Macromol. 24, 81–88 (1999)

    Article  CAS  Google Scholar 

  31. (a) F. Vollrath, Strength and structure of spiders’ silks. J. Biotechnol. 74, 67–83 (2000); (b) E. Servoli, D. Maniglio, A. Motta, R. Predazzer, C. Migliaresi, Surface properties of silk fibroin films and their interaction with fibroblasts. Macromol. Biosci. 5(12), 1175–1183 (2005)

    Google Scholar 

  32. M. Tsukada, G. Freddi, P. Monti, A. Bertoluzza, N. Kasai, Structure and molecular conformation opf Tussah silk fibroin films: effect of methanol. J. Polym. Sci. 33, 1995–2001 (1995)

    CAS  Google Scholar 

  33. K. Gellynck, P. Verdonk, R. Forsyth, K.F. Almqvist, E. Van Nimmen, T. Gheysens, L. Van Langenhove, P. Kiekens, J. Mertens, G. Verbruggen, Biocompatibility and biodegradability of spider egg sac silk. J. Mater. Sci. Mater. Med. (2008, in press)

  34. M. Cornelissen, G. Verbruggen, A.M. Malfait, E.M. Veys, C. Broddelez, L. De Ridder, The study of representative populations of native aggrecan aggregates synthesized by human chondrocytes in vitro. J. Tiss. Cult. Meth. 15, 139–146 (1993)

    Article  Google Scholar 

  35. L. Wang, G. Verbruggen, K.F. Almqvist, D. Elewaut, C. Broddelez, E.M. Veys, Flow cytometric analysis of the human articular chondrocyte phenotype. Osteoarthr. Cartilage 9, 73–84 (2001)

    Article  CAS  Google Scholar 

  36. C. Sartori, D.S. Finch, B. Ralph, K. Gilding, Determination of the cation content of alginate thin films by FTIR spectroscopy. Polymer 38, 43–51 (1997)

    Article  CAS  Google Scholar 

  37. C. Riekel, B. Madsen, D. Knight, F. Vollrath, X-ray diffraction on spider silk during controlled extrusion under a synchrotron radiation X-ray beam. Biomacromolecules 1, 622–626 (2000)

    Article  CAS  Google Scholar 

  38. E. Van Nimmen, K. Gellynck, D. De Bakker, T. Gheysens, J. Mertens, P. Kiekens, L. Van Langenhove, Research and development of spider silk for biomedical applications. in Proceedings SEM Annual Conference on Experimental and Applied Mechanics, Biological Inspired and multi-Functional Materials and Systems; Milwaukee, Wisconsin, USA, 10–12 June 2002

  39. C. Dicko, D. Knight, J.M. Kenney, F. Vollrath, Conformational polymorphism, stability and aggregation in spider dragline silks proteins. Int. J. Biol. Macromol. 36(4), 215–224 (2005)

    Article  CAS  Google Scholar 

  40. H. Liu, Y.W. Lee, M.F. Dean, Re-expression of differentiated proteoglycan phenotype by dedifferentiated human chondrocytes during culture in alginate beads. Biochim. Biophys. Acta 1425(3), 505–515 (1998)

    CAS  Google Scholar 

  41. C.J. Hunter, J.K. Mouw, M.E. Levenston, Dynamic compression of chondrocyte-seeded fibrin gels: effects on matrix accumulation and mechanical stiffness. Osteoarthr. Cartilage 12, 117–130 (2004)

    Article  Google Scholar 

  42. P.A. Hardy, A.C. Ridler, C.B. Chiarot, D.B. Plewes, R.M. Henkelman, Imaging articular cartilage under compression—cartilage elastography. Magn. Reson. Med. 53(5), 1065–1073 (2005)

    Article  Google Scholar 

Download references

Acknowledgement

This project was funded by the BOF (Special research Fund: B/03191/01, fund IV1) of the University of Ghent, and by FWO Grant 3G026305.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kris Gellynck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gellynck, K., Verdonk, P.C.M., Van Nimmen, E. et al. Silkworm and spider silk scaffolds for chondrocyte support. J Mater Sci: Mater Med 19, 3399–3409 (2008). https://doi.org/10.1007/s10856-008-3474-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-008-3474-6

Keywords

Navigation