Skip to main content
Log in

A review of exfoliated graphite

  • 50th Anniversary
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Exfoliated graphite (EG) refers to graphite that has a degree of separation of a substantial portion of the carbon layers in the graphite. Graphite nanoplatelet (GNP) is commonly prepared by mechanical agitation of EG. The EG exhibits clinginess, due to its cellular structure, but GNP does not. The clinginess allows the formation of EG compacts and flexible graphite sheet without a binder. The exfoliation typically involves intercalation, followed by heating. Upon heating, the intercalate vaporizes and/or decomposes into smaller molecules, thus causing expansion and cell formation. The sliding of the carbon layers relative to one another enables the cell wall to stretch. The exfoliation process is accompanied by intercalate desorption, so that only a small portion of the intercalate remains after exfoliation. The most widely used intercalate is sulfuric acid. The higher concentration of residue in unwashed EG causes the relative dielectric constant (50 Hz) of the EG to be 360 (higher than 120 for KOH-activated GNP), compared to the value of 38 for the water-washed case. An EG compact is obtained by the compression of EG at a pressure lower than that used for the fabrication of flexible graphite. Compared to flexible graphite, EG compacts are mechanically weak, but they exhibit viscous character, out-of-plane electrical/thermal conductivity and liquid permeability. The viscous character (flexural loss tangent up to 35 for the solid part of the compact) stems from the sliding of the carbon layers relative to one another, with the ease of the sliding enhanced by the exfoliation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chung DDL (1987) Exfoliation of graphite. J Mater Sci 22(12):4190–4198. doi:10.1007/978-1-4684-8267-6_4

    Article  Google Scholar 

  2. Boehm H (2010) Graphene-how a laboratory curiosity suddenly became extremely interesting. Angew Chem Int Ed 49(49):9332–9335

    Article  Google Scholar 

  3. Ahmadi-Moghadam B, Taheri F (2014) Effect of processing parameters on the structure and multi-functional performance of epoxy/GNP-nanocomposites. J Mater Sci 49(18):6180–6190. doi:10.1007/s10853-014-8332-y

    Article  Google Scholar 

  4. Inagaki M, Qiu J, Guo Q (2015) Carbon foam: preparation and application. Carbon 87:128–152

    Article  Google Scholar 

  5. Herold A, Petitjean D, Furdin G, Klatt M (1994) Exfoliation of graphite intercalation compounds: classification and discussion of the processes from new experimental data relative to graphite-acid compounds. Mater Sci Forum 152–153(Soft Chemistry Routes to New Materials):281–287

    Article  Google Scholar 

  6. Anderson SH, Chung DDL (1984) Exfoliation of intercalated graphite. Carbon 22(3):253–263

    Article  Google Scholar 

  7. Anderson SH, Chung DDL (1983) Exfoliation of single crystal graphite and graphite fibers intercalated with halogens. Synth Met 8:343–349

    Article  Google Scholar 

  8. Chung DDL (1987) Intercalate vaporization during the exfoliation of graphite intercalated with bromine. Carbon 25(3):361–365

    Article  Google Scholar 

  9. Chung DDL (2002) Review graphite. J Mater Sci 37(8):1475–1489. doi:10.1023/A:1014915307738

    Article  Google Scholar 

  10. Dresselhaus MS, Dresselhaus G (2002) Intercalation compounds of graphite. Adv Phys 51(1):1–186

    Article  Google Scholar 

  11. Inagaki M, Kang F, Toyoda M (2004) Exfoliation of graphite via intercalation compounds. Chem Phys Carbon 29:1–69

    Article  Google Scholar 

  12. Flandrois S, Hauw C, Mathur RB (1989–1990) Charge transfer in acceptor graphite intercalation compounds. Synth Met 34(1–3):399–404

  13. van Heerden X, Badenhorst H (2015) The influence of three different intercalation techniques on the microstructure of exfoliated graphite. Carbon 88:173–184

    Article  Google Scholar 

  14. Terence MC, Silva EE, Carrio JAG (2014) Electrochemically exfoliated graphene. J. Nano Res 29:29–33

    Article  Google Scholar 

  15. Park S, Kim S (2014) Preparation and capacitive property of graphene nanosheets prepared by using an electrostatic method. J Nanosci Nanotechnol 14(10):7784–7787

    Article  Google Scholar 

  16. Zhang C, Lv W, Xie X, Tang D, Liu C, Yang Q (2013) Towards low temperature thermal exfoliation of graphite oxide for graphene production. Carbon 62:11–24

    Article  Google Scholar 

  17. Mishra AK, Srinath C, Jain PK, Padya B, Chopkar M (2013) Characterization of intermediates in the synthesis of reduced graphene-oxide through sequential de-oxygenation. NanoTrends 14(2):1–9

    Google Scholar 

  18. Owens FJ (2015) Raman and surface-enhanced Raman spectroscopy evidence for oxidation-induced decomposition of graphite. Mol Phys 113(11):1280–1283

    Article  Google Scholar 

  19. Anderson SH, Chung DDL (1984) Graphite ribbons formed from graphite fibers. Carbon 22(6):613–614

    Article  Google Scholar 

  20. Daumas N, Herold A (1969) Relations between phase concept and reaction mechanics in graphite insertion compounds. C R Hebd Seances Acad Sci C 268:373–382

    Google Scholar 

  21. Heerschap M, Delavignette P, Amelinckx S (1964) Electron microscope study of interlamellar compounds of graphite with bromine, iodine monochloride and ferric chloride. Carbon 1:235–238

    Article  Google Scholar 

  22. Heerschap M, Delavignette P (1967) Electron-microscopy study of the ferric chloride/graphite compound. Carbon 5:383–384

    Article  Google Scholar 

  23. Saidaminov MI, Maksimova NV, Sorokina NE, Avdeev VV (2013) Effect of graphite nitrate exfoliation conditions on the released gas composition and properties of exfoliated graphite. Inorg Mater 49(9):883–888

    Article  Google Scholar 

  24. Yu K (2011) Preparation of exfoliated graphite by microwave using natural graphite with different particle sizes. Adv Mater Res (Zuerich, Switzerland) 163–167(Pt. 3, Advances in Structures):2333–2336

    Google Scholar 

  25. Zhao Q, Cheng X, Wu J, Yu X (2014) Sulfur-free exfoliated graphite with large exfoliated volume: Preparation, characterization and its adsorption performance. J Ind Eng Chem (Amst Neth) 20(6):4028–4032

    Article  Google Scholar 

  26. Sykam Nagaraju, Kar Kamal K (2014) Rapid synthesis of exfoliated graphite by microwave irradiation and oil sorption studies. Mater Lett 117:150–152

    Article  Google Scholar 

  27. Huczko A, Dabrowska A, Labedz O, Soszynski M, Bystrzejewski M, Baranowski P, Bhatta R, Pokhrel B, Kafle BP, Stelmakh S, Gierlotka S, Dyjak S (2014) Facile and fast combustion synthesis and characterization of novel carbon nanostructures. Phys Status Solidi B 251(12):2563–2568

    Article  Google Scholar 

  28. Tanaike O, Yamada Y, Kodama M, Miyajima N (2012) Exfoliation of graphite by pyrolysis of bromine-graphite intercalation compounds in a vacuum glass tube. J Phys Chem Solids 73(12):1420–1423

    Article  Google Scholar 

  29. Kovtyukhova NI, Wang Y, Berkdemir A, Cruz-Silva R, Terrones M, Crespi VH, Mallouk TE (2014) Non-oxidative intercalation and exfoliation of graphite by Bronsted acids. Nat Chem 6(11):957–963

    Article  Google Scholar 

  30. Celzard A, Mareche JF, Furdin G (2005) Modelling of exfoliated graphite. Prog Mater Sci 50(1):93–179

    Article  Google Scholar 

  31. Chen P, Chung DDL (2013) Viscoelastic behavior of the cell wall of exfoliated graphite. Carbon 61:305–312

    Article  Google Scholar 

  32. Wang A, Chung DDL (2014) Dielectric and electrical conduction behavior of carbon paste electrochemical electrodes, with decoupling of carbon, electrolyte and interface contributions. Carbon 72:135–151

    Article  Google Scholar 

  33. Bardhan KK, Wu JC, Culik JS, Anderson SH, Chung DDL (1980) Kinetics of intercalation and desorption in graphite. Synth Met 2:57

    Article  Google Scholar 

  34. Asghar HMA, Hussain SN, Sattar H, Brown NW, Roberts EPL (2014) Environmentally friendly preparation of exfoliated graphite. J Ind Eng Chem (Amst Neth) 20(4):1936–1941

    Article  Google Scholar 

  35. Liu D, Liang J (2014) Preparation of expandable graphite by ozone oxidation method. Adv Mater Res (Durnten-Zurich, Switzerland) 1051(Applied Engineering Decisions in the Context of Sustainable Development):121–124

    Google Scholar 

  36. Zhao J, Li X, Guo Y, Ma D (2014) Preparation and microstructure of exfoliated graphite with large expanding volume by two-step intercalation. Adv Mater Res (Durnten-Zurich, Switzerland) 852:101–105

    Google Scholar 

  37. Zhao J, Li X, Guo Y, Ma D, Li Y (2014) Microstructure and millimeter-wave attenuation performance of exfoliated graphite with different expanding volume. Key Eng Mater 609–610(Micro-Nano Technology XV):3–7

    Article  Google Scholar 

  38. Zhao J, Li X, Guo Y, Ma D (2014) Preparation and microstructure of exfoliated graphite with large expanding volume by two-step intercalation. Adv Mater Res (Durnten-Zurich, Switzerland) 852(Material Science and Advanced Technologies in Manufacturing):101–105

    Google Scholar 

  39. Hong X, Chung DDL (2015) Exfoliated graphite with relative dielectric constant reaching 360, obtained by exfoliation of acid-intercalated graphite flakes without subsequent removal of the residual acidity. Carbon 91:1–10

    Article  Google Scholar 

  40. Ndlovu T, Arotiba OA, Sampath S, Krause RW, Mamba BB (2012) Reactivities of modified and unmodified exfoliated graphite electrodes in selected redox systems. Int J Electrochem Sci 7(10):9441–9453

    Google Scholar 

  41. Wei XH, Liu L, Zhang JX, Shi JL, Guo QG (2010) The preparation and morphology characteristics of exfoliated graphite derived from HClO4-graphite intercalation compounds. Mater Lett 64(9):1007–1009

    Article  Google Scholar 

  42. Skowronski JM, Krawczyk P (2010) Improved hydrogen sorption/desorption capacity of exfoliated NiCl2-graphite intercalation compound effected by thermal treatment. Solid State Ionics 181(13–14):653–658

    Article  Google Scholar 

  43. Ovsiienko I, Lazarenko O, Matzui L, Brusylovets O, Le Normand F, Shames A (2014) Influence of chemical treatment on the microstructure of nanographite. Phys Status Solidi A 211(12):2765–2772

    Article  Google Scholar 

  44. Guadagno L, Raimondo M, Vertuccio L, Mauro M, Guerra G, Lafdi K, De Vivo B, Lamberti P, Spinelli G, Tucci V (2015) Optimization of graphene-based materials outperforming host epoxy matrices. RSC Adv 5(46):36969–36978

    Article  Google Scholar 

  45. She Y, Lu Z, Ni M, Li L, Leung MKH (2015) Facile synthesis of nitrogen and sulfur codoped carbon from ionic liquid as metal-free catalyst for oxygen reduction reaction. ACS Appl Mater Interfaces 7(13):7214–7221

    Article  Google Scholar 

  46. Mar M, Ahmad Y, Dubois M, Guerin K, Batisse N, Hamwi A (2015) Dual C-F bonding in fluorinated exfoliated graphite. J Fluor Chem 174:36–41

    Article  Google Scholar 

  47. Wang G, Sun Q, Zhang Y, Fan J, Ma L (2010) Sorption and regeneration of magnetic exfoliated graphite as a new sorbent for oil pollution. Desalination 263(1–3):183–188

    Article  Google Scholar 

  48. Ionov SG, Avdeev VV, Kuvshinnikov SV, Pavlova EP (2000) Physical and chemical properties of flexible graphite foils. Mol Cryst Liquid Cryst Sci Technol A 340(349–54):29

    Google Scholar 

  49. Wei XH, Liu L, Zhang JX, Shi JL, Guo QG (2010) Mechanical, electrical, thermal performances and structure characteristics of flexible graphite sheets. J Mater Sci 45:2449–2455. doi:10.1007/s10853-010-4216-y

    Article  Google Scholar 

  50. Chung DDL (2000) Flexible graphite for gasketing, adsorption, electromagnetic interference shielding, vibration damping, electrochemical applications, and stress sensing. J Mater Eng Perform 9(2):161–163

    Article  Google Scholar 

  51. Chugh R, Chung DDL (2002) Flexible graphite as a heating element. Carbon 40(13):2285–2289

    Article  Google Scholar 

  52. Chen P, Chung DDL (2012) Dynamic mechanical properties of flexible graphite made from exfoliated graphite. Carbon 50:283–289

    Article  Google Scholar 

  53. Luo X, Chugh R, Biller BC, Hoi YM, Chung DDL (2002) Electronic applications of flexible graphite. J Electron Mater 31(5):535–544

    Article  Google Scholar 

  54. Luo X, Chung DDL (1996) Electromagnetic interference shielding reaching 130 dB using flexible graphite. Carbon 34(10):1293–1294

    Article  Google Scholar 

  55. Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2):279–285

    Article  Google Scholar 

  56. Kitaoka S, Wada M, Nagai T, Osa N, Konno T (2011) Increasing the thermal diffusivity of flexible graphite sheets by superheated steam treatment. J Mater Sci 46(4):1132–1135. doi:10.1007/s10853-010-4991-5

    Article  Google Scholar 

  57. Kobayashi M, Toda H, Takeuchi A, Uesugi K, Suzuki Y (2012) Three-dimensional evaluation of the compression and recovery behavior in a flexible graphite sheet by synchrotron radiation microtomography. Mater Charact 69:52–62

    Article  Google Scholar 

  58. Chung DDL (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50:3342–3353

    Article  Google Scholar 

  59. Chung DDL, Takizawa Y (2012) Performance of isotropic and anisotropic heat spreaders. J Electron Mater 41(9):2580–2587

    Article  Google Scholar 

  60. Rogacheva AE, Kharitonov AP, Vinogradov AS, Teplyakov VV (2010) Gas permeability properties of modified membranes based on exfoliated graphite. Desalin Water Treat 14(1–3):192–195

    Article  Google Scholar 

  61. Chen P, Chung DDL (2014) Thermal and electrical conduction in the compaction direction of exfoliated graphite and their relation to the structure. Carbon 77:538–550

    Article  Google Scholar 

  62. Chung DDL (2014) Interface-derived extraordinary viscous behavior of exfoliated graphite. Carbon 68:646–652

    Article  Google Scholar 

  63. Chen P, Chung DDL (2015) Elastomeric behavior of exfoliated graphite, as shown by instrumented indentation testing. Carbon 81:505–513

    Article  Google Scholar 

  64. Fu W, Chung DDL (2001) Vibration reduction ability of polymers, particularly polymethylmethacrylate and polytetrafluoroethylene. Polym Polym Compos 9(6):423–426

    Google Scholar 

  65. Muthusamy S, Wang S, Chung DDL (2010) Unprecedented vibration damping with high values of loss modulus and loss tangent, exhibited by cement-matrix graphite network composite. Carbon 48(5):1457–1464

    Article  Google Scholar 

  66. Chen P, Chung DDL (2013) Comparative evaluation of cement-matrix composites with distributed versus networked exfoliated graphite. Carbon 63:446–453

    Article  Google Scholar 

  67. Filimonov SV, Sorokina NE, Yashchenko NV, Malakho AP, Avdeev VV (2013) Thermal properties of high-porosity monoliths based on exfoliated graphite. Inorg Mater 49(4):340–346

    Article  Google Scholar 

  68. Gao L, Tu H (2014) Research on oilfield produced water treatment by moderately compressed exfoliated graphite blocks. Appl Mech Mater 468(Research on Material Engineering and Manufacturing Engineering):53–56

    Google Scholar 

  69. Ndlovu T, Arotiba OA, Sampath S, Krause RW, Mamba BB (2011) Electrochemical detection and removal of lead in water using poly(propylene imine) modified re-compressed exfoliated graphite electrodes. J Appl Electrochem 41(12):1389–1396

    Article  Google Scholar 

  70. Lin C, Chung DDL (2009) Graphite nanoplatelet pastes versus carbon black pastes as thermal interface materials. Carbon 47(1):295–305

    Article  Google Scholar 

  71. Xiang J, Drzal LT (2011) Thermal conductivity of exfoliated graphite nanoplatelet paper. Carbon 49(3):773–778

    Article  Google Scholar 

  72. Ferreira CI, Bianchi O, Oviedo MAS, Bof-de-Oliveira RV, Mauler RS (2013) Morphological, viscoelastic and mechanical characterization of polypropylene/exfoliated graphite nanocomposites. Polimeros Ciencia e Tecnologia 23(4):456–461

    Article  Google Scholar 

  73. Sykam N, Gautam RK, Kar KK (2015) Electrical, mechanical, and thermal properties of exfoliated graphite/phenolic resin composite bipolar plate for polymer electrolyte membrane fuel cell. Polym Eng Sci 55(4):917–923

    Article  Google Scholar 

  74. Valentini M, Piana F, Pionteck J, Lamastra FR, Nanni F (2015) Electromagnetic properties and performance of exfoliated graphite (EG)—thermoplastic polyurethane (TPU) nanocomposites at microwaves. Compos Sci Technol 114:26–33

    Article  Google Scholar 

  75. Boehle M, Lafdi K, Zinsser E, Collins P (2010) Exfoliated graphite as a filler to enhance the electromagnetic interference shielding of polymers. J Sci Conf Proc 2(1):3–7

    Article  Google Scholar 

  76. Avila AF, Munhoz VC, de Oliveira AM, Santos MCG, Lacerda GRBS, Goncalves CP (2014) Nano-based systems for oil spills control and cleanup. J Hazard Mater 272:20–27

    Article  Google Scholar 

  77. Kujawski M, Pearse JD, Smela E (2010) Elastomers filled with exfoliated graphite as compliant electrodes. Carbon 48(9):2409–2417

    Article  Google Scholar 

  78. Yu L, Zhang Y, Shang J, Ke S, Tong W, Shen B, Huang H (2012) Electrical and dielectric properties of exfoliated graphite/polyimide composite films with low percolation threshold. J Electron Mater 41(9):2439–2446

    Article  Google Scholar 

  79. Yu L, Zhang Y, Tong W, Shang J, Lv F, Chu PK, Guo W (2012) Hierarchical composites of conductivity controllable polyaniline layers on the exfoliated graphite for dielectric application. Composites A 43(11):2039–2045

    Article  Google Scholar 

  80. Naderi HR, Mortaheb HR, Zolfaghari A (2014) Supercapacitive properties of nanostructured MnO2/exfoliated graphite synthesized by ultrasonic vibration. J Electroanal Chem 719:98–105

    Article  Google Scholar 

  81. Yang Y, Liu E, Li L, Huang Z, Shen H, Xiang X (2009) Nanostructured MnO2/exfoliated graphite composite electrode as supercapacitors. J Alloys Compd 487(1–2):564–567

    Article  Google Scholar 

  82. Focke WW, Badenhorst H, Ramjee S, Kruger HJ, Van Schalkwyk R, Rand B (2014) Graphite foam from pitch and expandable graphite. Carbon 73:41–50

    Article  Google Scholar 

  83. Jana P, Fierro V, Pizzi A, Celzard A (2014) Biomass-derived, thermally conducting, carbon foams for seasonal thermal storage. Biomass Bioenergy 67:312–318

    Article  Google Scholar 

  84. Tikhomirov AS, Sorokina NE, Shornikova ON, Morozov VA, Van Tendeloo G, Avdeev VV (2010) The chemical vapor infiltration of exfoliated graphite to produce carbon/carbon composites. Carbon 49(1):147–153

    Article  Google Scholar 

  85. Chen P, Chung DDL (2013) Mechanical energy dissipation using cement-based materials with admixtures. ACI Mater J 110(3):279–290

    Google Scholar 

  86. Fu X, Chung DDL (1996) Vibration damping admixtures for cement. Cem Concr Res 26(1):69–75

    Article  Google Scholar 

  87. Chung DDL (2002) Improving cement-based materials by using silica fume. J Mater Sci 37(4):673–682. doi:10.1023/A:1013889725971

    Article  Google Scholar 

  88. Song X, Shi Z, Tan X, Zhang S, Liu G, Wu K (2014) One-step solvent exfoliation of graphite to produce a highly-sensitive electrochemical sensor for tartrazine. Sens Actuators B 197:104–108

    Article  Google Scholar 

  89. Ma C, Ma C, Wang J, Wang H, Shi J, Song Y, Guo Q, Liu L (2014) Exfoliated graphite as a flexible and conductive support for Si-based Li-ion battery anodes. Carbon 72:38–46

    Article  Google Scholar 

  90. Zhao Q, Meng S, Wang J, Li Z, Liu J, Guo Y (2014) Preparation of solid superacid S2O2-8/TiO2-exfoliated graphite (EG) and its catalytic performance. Ceramics Int 40(10 Part B):16183–16187

    Article  Google Scholar 

  91. Ischenko EV, Matzui LY, Gayday SV, Vovchenko LL, Kartashova TV, Lisnyak VV (2010) Thermo-exfoliated graphite containing CuO/Cu2(OH)3NO3:(Co2+/Fe3+) composites: preparation, characterization and catalytic performance in CO conversion. Materials 3:572–584

    Article  Google Scholar 

  92. Savchenko DV, Ionov SG, Sizov AI (2010) Properties of carbon-carbon composites based on exfoliated graphite. Inorg Mater 46(2):132–138

    Article  Google Scholar 

  93. Sharma M, Chung DDL (2015) Solder-graphite network composite sheets as high-performance thermal interface materials. J Electron Mater 44(3):929–947

    Article  Google Scholar 

  94. Leong C, Aoyagi Y, Chung DDL (2006) Carbon black pastes as coatings for improving thermal gap-filling materials. Carbon 44(3):435–440

    Article  Google Scholar 

  95. Wang H, Liu Z, Chen X, Han P, Dong S, Cui G (2011) Exfoliated graphite nanosheets/carbon nanotubes hybrid materials for superior performance supercapacitors. J Solid State Electrochem 15(6):1179–1184

    Article  Google Scholar 

  96. Kim M, Hwang S, Kim B, Baek J, Shin H, Park HW, Park Y, Bae I, Lee S (2014) Modeling, processing, and characterization of exfoliated graphite nanoplatelet-nylon 6 composite fibers. Composites B 66:511–517

    Article  Google Scholar 

  97. Karevan M, Kalaitzidou K (2013) Understanding the property enhancement mechanism in exfoliated graphite nanoplatelets reinforced polymer nanocomposites. Compos Interfaces 20(4):255–268

    Article  Google Scholar 

  98. Duguay AJ, Kiziltas A, Nader JW, Gardner DJ, Dagher HJ (2014) Impact properties and rheological behavior of exfoliated graphite nanoplatelet-filled impact modified polypropylene nanocomposites. J Nanopart Res 16(3):2307/1–2307/11

    Google Scholar 

  99. King JA, Via MD, Morrison FA, Wiese KR, Beach EA, Cieslinski MJ, Bogucki GR (2012) Characterization of exfoliated graphite nanoplatelets/polycarbonate composites: electrical and thermal conductivity, and tensile, flexural, and rheological properties. J Compos Mater 46(9):1029–1039

    Article  Google Scholar 

  100. Alzari V, Mariani A, Monticelli O, Valentini L, Nuvoli D, Piccinini M, Scognamillo S, Bon SB, Illescas J (2010) Stimuli-responsive polymer hydrogels containing partially exfoliated graphite. J Polym Sci A 48(23):5375–5381

    Article  Google Scholar 

  101. Patsidis AC, Kalaitzidou K, Psarras GC (2014) Graphite nanoplatelets/polymer nanocomposites: thermomechanical, dielectric, and functional behavior. J Therm Anal Calorim 116(1):41–49

    Article  Google Scholar 

  102. Al-Ghamdi AA, Al-Hartomy OA, Al-Solamy F, Al-Ghamdi AA, El-Tantawy F (2013) Electromagnetic wave shielding and microwave absorbing properties of hybrid epoxy resin/foliated graphite nanocomposites. J Appl Polym Sci 127(3):2227–2234

    Article  Google Scholar 

  103. Kim M, Yan J, Joo K, Pandey JK, Kang Y, Ahn S (2013) Synergistic effects of carbon nanotubes and exfoliated graphite nanoplatelets for electromagnetic interference shielding and soundproofing. J Appl Polym Sci 130(6):3947–3951

    Google Scholar 

  104. Shui X, Chung DDL (1997) Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness. J Electron Mater 26(8):928–934

    Article  Google Scholar 

  105. He F, Lam K, Fan J, Chan LH (2014) Improved dielectric properties for chemically functionalized exfoliated graphite nanoplates/syndiotactic polystyrene composites prepared by a solution-blending method. Carbon 80:496–503

    Article  Google Scholar 

  106. Patsidis AC, Kalaitzidou K, Psarras GC (2012) Dielectric response, functionality and energy storage in epoxy nanocomposites: barium titanate vs. exfoliated graphite nanoplatelets. Mater Chem Phys 135(2–3):798–805

    Article  Google Scholar 

  107. Cho D, Hwang JH (2013) Elastomeric coating of exfoliated graphite nanoplatelets with amine-terminated poly(butadiene-co-acrylonitrile): characterization and its epoxy toughening effect. Adv Polymer Technol 32(4):21366/1–21366/8

    Article  Google Scholar 

  108. Song SH, Jeong HK, Kang YG (2010) Preparation and characterization of exfoliated graphite and its styrene butadiene rubber nanocomposites. J Ind Eng Chem (Amst Neth) 16(6):1059–1065

    Article  Google Scholar 

  109. Jeong S, Chang SJ, We S, Kim S (2015) Energy efficient thermal storage montmorillonite with phase change material containing exfoliated graphite nanoplatelets. Solar Energy Mater Solar Cells 139:65–70

    Article  Google Scholar 

  110. Wu C, Pu N, Liao C, Wu B, Liu Y, Ger M (2015) High-electrical-resistivity thermally-conductive phase change materials prepared by adding nanographitic fillers into paraffin. Microelectron Eng 138:91–96

    Article  Google Scholar 

  111. Mallow A, Abdelaziz O, Kalaitzidou K, Graham S (2012) Investigation of the stability of paraffin-exfoliated graphite nanoplatelet composites for latent heat thermal storage systems. J Mater Chem 22(46):24469–24476

    Article  Google Scholar 

  112. Huang J, Wang TY, Wang CH, Rao ZH (2011) Exfoliated graphite/paraffin nanocomposites as phase change materials for thermal energy storage application. Mater Res Innov 15(6):422–427

    Article  Google Scholar 

  113. Xiang J, Drzal LT (2011) Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material. Solar Energy Mater Solar Cells 95(7):1811–1818

    Article  Google Scholar 

  114. Jeong S, Jeon J, Chung O, Kim S, Kim S (2013) Evaluation of PCM/diatomite composites using exfoliated graphite nanoplatelets (xGnP) to improve thermal properties. J Therm Anal Calorim 114(2):689–698

    Article  Google Scholar 

  115. Jeong S, Chung O, Yu S, Kim S, Kim S (2013) Improvement of the thermal properties of Bio-based PCM using exfoliated graphite nanoplatelets. Solar Energy Mater Solar Cells 117:87–92

    Article  Google Scholar 

  116. Idumah CI, Hassan A, Affam AC (2015) A review of recent developments in flammability of polymer nanocomposites. Rev Chem Eng 31(2):149–177

    Article  Google Scholar 

  117. Inuwa IM, Hassan A, Wang D, Samsudin SA, Mohamad Haafiz MK, Wong SL, Jawaid M (2014) Influence of exfoliated graphite nanoplatelets on the flammability and thermal properties of polyethylene terephthalate/polypropylene nanocomposites. Polym Degrad Stab 110:137–148

    Article  Google Scholar 

  118. Pedrazzoli D, Pegoretti A, Kalaitzidou K (2014) Synergistic effect of exfoliated graphite nanoplatelets and short glass fiber on the mechanical and interfacial properties of epoxy composites. Compos Sci Technol 98:15–21

    Article  Google Scholar 

  119. Kim M, Kang G, Park HW, Park Y, Park Y, Yoon KH (2012) Design, manufacturing, and characterization of high-performance lightweight bipolar plates based on carbon nanotube-exfoliated graphite nanoplatelet hybrid nanocomposites. J Nanomater 2012:115

    Google Scholar 

  120. Yang Y, Wang C, Chen M, Shi Z, Zheng J (2010) Facile synthesis of mesophase pitch/exfoliated graphite nanoplatelets nanocomposite and its application as anode materials for lithium-ion batteries. J Solid State Chem 183(9):2116–2120

    Article  Google Scholar 

  121. Sherif EM, Latief FH, Junaedi H, Almajid AA (2012) Influence of exfoliated graphite nanoplatelets particles additions and sintering temperature on the mechanical properties of aluminum matrix composites. Int J Electrochem Sci 7(5):4352–4361

    Google Scholar 

  122. Latief FH, Sherif EM, Almajid AA, Junaedi H (2011) Fabrication of exfoliated graphite nanoplatelets-reinforced aluminum composites and evaluating their mechanical properties and corrosion behavior. J Anal Appl Pyrolysis 92(2):485–492

    Article  Google Scholar 

  123. Sherif EM, Almajid AA, Latif FH, Junaedi H (2011) Effects of graphite on the corrosion behavior of aluminum-graphite composite in sodium chloride solutions. Int J Electrochem Sci 6(4):1085–1099

    Google Scholar 

  124. Kim J, Lee J, Choi Y, Kim S, Moon HJ, Yoon D (2013) Confirmation of the performance of exfoliated graphite nanoplatelets for pollutant reduction rate on wood panel. J Compos Mater 47(8):1039–1044, 6

  125. Lee J, Kim J, Kim S, Kim JT (2013) Thermal extractor analysis of VOCs emitted from building materials and evaluation of the reduction performance of exfoliated graphite nanoplatelets. Indoor Built Environ 22(1):68–76, 9

  126. Jiang H, Chen P, Zhang W, Luo S, Luo X, Au C, Li M (2014) Deposition of nano Fe3O4mZrO2 onto exfoliated graphite oxide sheets and its application for removal of amaranth. Appl Surf Sci 317:1080–1089

    Article  Google Scholar 

  127. Rider AN, An Q, Thostenson ET, Brack N (2014) Ultrasonicated-ozone modification of exfoliated graphite for stable aqueous graphitic nanoplatelet dispersions. Nanotechnology 25(49):495607/1–495607/12

    Article  Google Scholar 

  128. Ion I, Sirbu F, Ion AC (2015) Thermophysical investigations of exfoliated graphite nanoplatelets and active carbon in binary aqueous environments at different temperatures. J Mater Sci 50(2):587–598. doi:10.1007/s10853-014-8616-2

    Article  Google Scholar 

  129. Ion AC, Alpatova A, Ion I, Culetu A (2011) Study on phenol adsorption from aqueous solutions on exfoliated graphitic nanoplatelets. Mater Sci Eng B 176(7):588–595

    Article  Google Scholar 

  130. Park EJ, Park SD, Bang IC, ParkY Park HW (2012) Critical heat flux characteristics of nanofluids based on exfoliated graphite nanoplatelets (xGnPs). Mater Lett 81:193–197

    Article  Google Scholar 

  131. Do I, Drzal LT (2014) Ionic liquid-assisted synthesis of Pt nanoparticles onto exfoliated graphite nanoplatelets for fuel cells. ACS Appl Mater Interfaces 6(15):12126–12136

    Article  Google Scholar 

  132. Lin C, Chung DDL (2007) Effect of carbon black structure on the effectiveness of carbon black thermal interface pastes. Carbon 45(15):2922–2931

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. L. Chung.

Ethics declarations

Conflict of Interest

The author declares that she has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, D.D.L. A review of exfoliated graphite. J Mater Sci 51, 554–568 (2016). https://doi.org/10.1007/s10853-015-9284-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-015-9284-6

Keywords

Navigation