Skip to main content
Log in

Mn substitution-induced revival of the ferroelectric antiferromagnetic phase in Bi1−x Ca x FeO3−x/2 multiferroics

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Room-temperature X-ray diffraction, piezoresponse force microscopy, and SQUID magnetometry measurements of the Bi0.9Ca0.1Fe1−y Mn y O3 (0 ≤ y ≤ 0.5) ferromanganites have been carried out to illustrate the effect of B-site substitution on the crystal structure and multiferroic properties of the Ca-doped compound representing an intermediate ferroelectric and weak ferromagnetic phase of the Bi1−x Ca x FeO3−x/2 perovskites. The Mn doping has been shown to restore multiferroic behavior specific to pure BiFeO3. Indeed, the 0.1 ≤ y ≤ 0.4 samples have been found to possess a single-phase rhombohedral structure compatible with the ferroelectric polarization and antiferromagnetism. Further increase of the Mn concentration stabilizes an orthorhombic structure typical of the high-pressure antiferroelectric phase of the BiFe1−y Mn y O3 perovskites. These results, particularly important from the viewpoint of understanding the origin of weak ferromagnetism in the Bi1−x Ca x FeO3−x/2 system, are discussed using a model accounting for the doping-related defect formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khomskii D (2009) Classifying multiferroics: mechanisms and effects. Physics 2(20):1–8

    Google Scholar 

  2. Catalan G, Scott JF (2009) Physics and applications of bismuth ferrite. Adv Mater 21:2463–2485

    Article  Google Scholar 

  3. Yang C-H, Kan D, Takeuchi I, Nagarajan V, Seidel J (2012) Doping BiFeO3: approaches and enhanced functionality. Phys Chem Chem Phys 14:15953–15962

    Article  Google Scholar 

  4. Kubel F, Schmid H (1990) Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Cryst B 46:698–702

    Article  Google Scholar 

  5. Lebeugle D, Colson D, Forget A, Viret M (2007) Very large spontaneous electric polarization in BiFeO3 single crystals at room temperature and its evolution under cycling fields. Appl Phys Lett 91:022907

    Article  Google Scholar 

  6. Zvezdin AK, Pyatakov AP (2009) Flexomagnetoelectric effect in bismuth ferrite. Phys Status Solidi B 246:1956–1960

    Article  Google Scholar 

  7. Sosnowska I, Peterlin-Neumaier T, Steichele E (1982) Spiral magnetic ordering in bismuth ferrite. J. Phys. C 15:4835–4846

    Article  Google Scholar 

  8. Bhattacharjee S, Tripathi S, Pandey D (2007) Morphotropic phase boundary in (1−x)BiFeO3xPbTiO3: phase coexistence region and unusually large tetragonality. Appl Phys Lett 91:042903

    Article  Google Scholar 

  9. Singh A, Pandey V, Kotnala RK, Pandey D (2008) Direct evidence for multiferroic magnetoelectric coupling in 0.9BiFeO3–0.1BaTiO3. Phys Rev Lett 101:247602

    Article  Google Scholar 

  10. Kumar P, Kar M (2014) Tuning of net magnetic moment in BiFeO3 multiferroics by co-substitution of Nd and Mn. Phys B 448:90–95

    Article  Google Scholar 

  11. Kumar P, Kar M (2014) Effect of structural transition on magnetic and optical properties of Ca and Ti co-substituted BiFeO3 ceramics. J Alloy Compd 584:566–572

    Article  Google Scholar 

  12. Troyanchuk IO, Karpinsky DV, Bushinsky MV, Khomchenko VA, Kakazei GN, Araujo JP, Tovar M, Sikolenko V, Efimov V, Kholkin AL (2011) Isothermal structural transitions, magnetization and large piezoelectric response in Bi1−x La x FeO3 perovskites. Phys Rev B 83:054109

    Article  Google Scholar 

  13. Khomchenko VA, Troyanchuk IO, Karpinsky DV, Paixão JA (2012) Structural and magnetic phase transitions in Bi1−x Pr x FeO3 perovskites. J Mater Sci 47:1578–1581. doi:10.1007/s10853-011-6040-4

    Article  Google Scholar 

  14. Levin I, Karimi S, Provenzano V, Dennis CL, Wu H, Comyn TP, Stevenson TJ, Smith RI, Reaney IM (2010) Reorientation of magnetic dipoles at the antiferroelectric-paraelectric phase transition of Bi1−x Nd x FeO3 (0.15 ≤ x ≤ 0.25). Phys Rev B 81:020103

    Article  Google Scholar 

  15. Selbach SM, Tybell T, Einarsrud M-A, Grande T (2009) Structure and properties of multiferroic oxygen hyperstoichiometric BiFe1−x Mn x O3+δ. Chem Mater 21:5176–5186

    Article  Google Scholar 

  16. Belik AA, Abakumov AM, Tsirlin AA, Hadermann J, Kim J, Van Tendeloo G, Takayama-Muromachi E (2011) Structure and magnetic properties of BiFe0.75Mn0.25O3 perovskite prepared at ambient and high pressure. Chem Mater 23:4505–4514

    Article  Google Scholar 

  17. Khomchenko VA, Troyanchuk IO, Kovetskaya MI, Kopcewicz M, Paixão JA (2012) Effect of Mn substitution on crystal structure and magnetic properties of Bi1−x Pr x FeO3 multiferroics. J Phys D Appl Phys 45:045302

    Article  Google Scholar 

  18. Khomchenko VA, Karpinsky DV, Pereira LCJ, Kholkin AL, Paixão JA (2013) Mn substitution-modified polar phase in the Bi1−x Nd x FeO3 multiferroics. J Appl Phys 113:214112

    Article  Google Scholar 

  19. Troyanchuk IO, Karpinsky DV, Bushinsky MV, Kovetskaya MI, Efimova EA, Eremenko VV (2011) Morphotropic phase boundary, weak ferromagnetism, and strong piezoelectric effect in Bi1−x Ca x FeO3−x/2 compounds. JETP 113:1025–1031

    Article  Google Scholar 

  20. Khomchenko VA, Troyanchuk IO, Többens DM, Sikolenko V, Paixão JA (2013) Composition- and temperature-driven structural transitions in Bi1−x Ca x FeO3 multiferroics: a neutron diffraction study. J Phys Condens Matter 25:135902

    Article  Google Scholar 

  21. Yang C-H, Seidel J, Kim SY, Rossen PB, Yu P, Gajek M, Chu YH, Martin LW, Holcomb MB, He Q, Maksymovych P, Balke N, Kalinin SV, Baddorf AP, Basu SR, Scullin ML, Ramesh R (2009) Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat Mater 8:485–493

    Article  Google Scholar 

  22. Seidel J, Luo W, Suresha SJ, Nguyen P-K, Lee AS, Kim S-Y, Yang C-H, Pennycook SJ, Pantelides ST, Scott JF, Ramesh R (2012) Prominent electrochromism through vacancy-order melting in a complex oxide. Nat Commun 3:799

    Article  Google Scholar 

  23. Ikeda-Ohno A, Lim JS, Ohkochi T, Yang C-H, Seidel J (2014) Investigation of continuous changes in the electric-field-induced electronic state in Bi1−x Ca x FeO3-δ. Phys Chem Chem Phys 16:17412–17416

    Article  Google Scholar 

  24. Le Bail A, Duroy H, Fourquet JL (1988) Ab-initio structure determination of LiSbWO6 by X-Ray powder diffraction. Mat Res Bull 23:447–452

    Article  Google Scholar 

  25. Rodríguez-Carvajal J (1993) Recent advances in magnetic structure determination by neutron powder diffraction. Phys B 192:55–69

    Article  Google Scholar 

  26. Chen W, Williams AJ, Ortega-San-Martin L, Li M, Sinclair DC, Zhou W, Attfield JP (2009) Robust antiferromagnetism and structural disorder in Bi x Ca1−x FeO3 perovskites. Chem Mater 21:2085–2093

    Article  Google Scholar 

  27. Schiemer J, Withers R, Norén L, Liu Y, Bourgeois L, Stewart G (2009) Detailed phase analysis and crystal structure investigation of a Bi1−x Ca x FeO3−x/2 perovskite-related solid solution phase and selected property measurements thereof. Chem Mater 21:4223–4232

    Article  Google Scholar 

  28. Tzankov D, Kovacheva D, Krezhov K, Puźniak R, Wiśniewski A, Sváb E, Mikhov M (2005) Magnetic and transport properties of Bi0.5Ca0.5Fe x Mn1−x O3 (0 ≤ x ≤ 0.6). J Phys Condens Matter 17:4319–4332

    Article  Google Scholar 

  29. Troyanchuk IO, Karpinskii DV, Bushinskii MV, Chobot AN, Pushkarev NV, Prohnenko O, Kopcewicz M, Szymczak R (2009) Crystal and magnetic structures of the Bi1−x Sr x FeO3-δ and Bi1−x A x Fe1−x Mn x O3 (A = Sr, Ca) solid solutions. Crystallogr Rep 54:1172–1178

    Article  Google Scholar 

  30. Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst A 32:751–767

    Article  Google Scholar 

  31. Kozlenko DP, Belik AA, Belushkin AV, Lukin EV, Marshall WG, Savenko BN, Takayama-Muromachi E (2011) Antipolar phase in multiferroic BiFeO3 at high pressure. Phys Rev B 84:094108

    Article  Google Scholar 

  32. Khomchenko VA, Pereira LCJ, Paixão JA (2014) Structural and magnetic phase transitions in Bi1−x Nd x Fe1−x Mn x O3 multiferroics. J Appl Phys 115:034102

    Article  Google Scholar 

  33. Khomchenko VA, Pereira LCJ, Paixão JA (2014) Weak ferromagnetism and nanodimensional ferroelectric domain structure stabilized in the polar phase of Bi1−x Nd x FeO3 multiferroics via Ti doping. J Appl Phys 115:164101

    Article  Google Scholar 

  34. Azuma M, Kanda H, Belik AA, Shimakawa Y, Takano M (2007) Magnetic and structural properties of BiFe1−x Mn x O3. J Magn Magn Mater 310:1177–1179

    Article  Google Scholar 

  35. Mandal P, Sundaresan A, Rao CNR, Iyo A, Shirage PM, Tanaka Y, Simon C, Pralong V, Lebedev OI, Caignaert V, Raveau B (2010) Temperature-induced magnetization reversal in BiFe0.5Mn0.5O3 synthesized at high pressure. Phys Rev B 82:100416

    Article  Google Scholar 

  36. Yin LH, Sun YP, Zhang FH, Wu WB, Luo X, Zhu XB, Yang ZR, Dai JM, Song WH, Zhang RL (2009) Magnetic and electrical properties of Bi0.8Ca0.2Fe1−x Mn x O3 (0 ≤ x ≤ 0.5). J Alloys Compd 488:254–259

    Article  Google Scholar 

  37. Sardar K, Hong J, Catalan G, Biswas PK, Lees MR, Walton RI, Scott JF, Redfern SAT (2012) Structural, spectroscopic, magnetic and electrical characterization of Ca-doped polycrystalline bismuth ferrite, Bi1−x Ca x FeO3−x/2 (x ≤ 0.1). J Phys Condens Matter 24:045905

    Article  Google Scholar 

  38. Schiemer JA, Withers RL, Liu Y, Carpenter MA (2013) Ca-doping of BiFeO3: the role of strain in determining coupling between ferroelectric displacements, magnetic moments, octahedral tilting, and oxygen-vacancy ordering. Chem Mater 25:4436–4446

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by funds from FEDER (Programa Operacional Factores de Competitividade COMPETE) and from FCT-Fundação para a Ciência e a Tecnologia under the project PEst-C/FIS/UI0036/2014. Access to TAIL-UC facility funded under QREN-Mais Centro Project ICT_2009_02_012_1890 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Khomchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khomchenko, V.A., Pereira, L.C.J. & Paixão, J.A. Mn substitution-induced revival of the ferroelectric antiferromagnetic phase in Bi1−x Ca x FeO3−x/2 multiferroics. J Mater Sci 50, 1740–1745 (2015). https://doi.org/10.1007/s10853-014-8735-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-014-8735-9

Keywords

Navigation