Skip to main content
Log in

Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

X-ray photoelectron spectroscopy (XPS) is among the most powerful methods to determine the surface chemical properties of carbon materials. Because heat-treated graphite oxide includes various defects, analyses of the structure by XPS help us understand the structures of various carbon materials. Thus, XPS spectra of graphene-related materials containing various functional groups and other defects on edges and in the basal plane were simulated and full width at half maximums (FWHMs) and peak shifts were obtained by density functional theory calculation. Shifts of whole C1s spectra were influenced by the electron-withdrawing functional groups such as C=O-containing functional groups. FWHMs of the main peak of C1s spectra were influenced by mainly electron-withdrawing functional groups in addition to defects such as vacancy, pentagons, and heptagons. Analyses using only XPS provide us limited information, even though the peak tops and FHWMs of simulated XPS spectra are used for assignment. Combination use of peak shifts and FWHMs of XPS spectra, infrared spectroscopy, and density functional theory calculation provided more reliable assignments of defects including oxygen-containing functional groups of carbon materials than commonly used methods using only peak shifts of XPS spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Radovic LR (2001) Chemistry and physics of carbon, vol 27. Marcel Dekker, New York, p 131

    Google Scholar 

  2. Serp P, Figueiredo JL (2009) Carbon materials for catalysis. Wiley, Hoboken

    Google Scholar 

  3. Banhart F, Kotakoski J, Krasheninnikov AV (2011) ACS Nano 5(1):26

    Article  CAS  Google Scholar 

  4. Machado BF, Serp P (2012) Catal Sci Technol 2:54

    Article  CAS  Google Scholar 

  5. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Adv Mater 22:3906

    Article  CAS  Google Scholar 

  6. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Trends Biotechnol 29:205

    Article  Google Scholar 

  7. Evans EL, Lopez-Gonzalez JDD, Martin-Rodriguez A, Rodriguez-Reinoso F (1975) Carbon 13:461

    Article  CAS  Google Scholar 

  8. Donnet JB, Dauksch H, Escard J, Winter C (1972) C R Acad Sci Paris 275:1219

    CAS  Google Scholar 

  9. Ishitani A (1981) Carbon 19(4):269

    Article  CAS  Google Scholar 

  10. Takahagi T, Ishitani A (1988) Carbon 26(3):389

    Article  CAS  Google Scholar 

  11. Proctor A, Sherwood PMA (1983) Carbon 21(1):53

    Article  CAS  Google Scholar 

  12. Estrade-Szwarckopf H (2004) Carbon 42:1713

    Article  CAS  Google Scholar 

  13. Barinov A, Malcioglu OB, Fabris S, Sun T, Gregoratti L, Dalmiglio M, Kiskinova M (2009) J Phys Chem C 113(21):9009

    Article  CAS  Google Scholar 

  14. Chen W, Zhu Z, Li S, Chen C, Yan L (2012) Nanoscale 4:2124

    Article  CAS  Google Scholar 

  15. Nikitin A, Xiaolin Li, Zhang Z, Ogasawara H, Dai H, Nilsson A (2008) Nano Lett 8(1):162

    Article  CAS  Google Scholar 

  16. Larciprete R, Lacovig P, Gardonio S, Baraldi A, Lizzit S (2012) J Phys Chem C 116:9900

    Article  CAS  Google Scholar 

  17. Hadži D, Novak A (1955) Trans Faraday Soc 51:1614

    Article  Google Scholar 

  18. Scholz W, Boehm HP (1969) Z Anorg Allg Chem 369:327

    Article  CAS  Google Scholar 

  19. Acik M, Lee G, Mattevi C, Pirkle A, Wallace RM, Chhowalla M, Cho K, Chabal Y (2011) J Phys Chem C 115:19761

    Article  CAS  Google Scholar 

  20. Hontoria-Lucas C, López-Peinado AJ, López-González JD, Rojas-Cervantes ML, Martín-Aranda RM (1995) Carbon 33(11):1585

    Article  CAS  Google Scholar 

  21. Lee DW, De Los Santos LV, Seo JW, Leon Felix L, Bustamante AD, Cole JM, Barnes CHW (2010) J Phys Chem B 114:5723

    Article  CAS  Google Scholar 

  22. Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dekany I (2006) Chem Mater 18:2740

    Article  Google Scholar 

  23. Petit C, Seredych M, Bandosz TJ (2009) J Mater Chem 19:9176

    Article  CAS  Google Scholar 

  24. Acik M, Lee G, Mattevi C, Chhowalla M, Cho K, Chabal YJ (2010) Nat Mater 9:840

    Article  CAS  Google Scholar 

  25. Jeong HK, Noh HJ, Kim JY, Jin MH, Park CY, Lee YH (2008) Europhys Lett 82:67004

    Article  Google Scholar 

  26. Sun H, Yang Y, Huang Q (2011) Integr Ferroelectr 128:163

    Article  CAS  Google Scholar 

  27. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) Chem Soc Rev 39:228

    Article  CAS  Google Scholar 

  28. Hofmann U, Holst R (1939) Ber Dtsch Chem Ges 72:754

    Article  Google Scholar 

  29. Ruess G (1947) Monatsh Chem 76(3):381

    Article  CAS  Google Scholar 

  30. Lerf A, He H, Riedl T, Dorster M, Klinowski (1997) J Solid State Ionics 857:101

    Google Scholar 

  31. Kim S, Zhou S, Hu Y, Acik M, Chabal YJ, Berger C, de Heer W, Bongiorno A, Riedo E (2012) Nat Mater 11:544

    Article  CAS  Google Scholar 

  32. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’hommer RK, Car R, Saville DA, Aksay IA (2006) J Phys Chem B 110(17):8535

    Article  CAS  Google Scholar 

  33. Li Z, Zhang W, Luo Y, Yang J, Hou JG (2009) J Am Chem Soc 131:6320

    Article  CAS  Google Scholar 

  34. Li JL, Kudin KN, McAllister MJ, Prud’homme RK, Aksay IA, Car R (2006) Phys Rev Lett 96:176101

    Article  Google Scholar 

  35. Zhang W, Carravetta V, Li Z, Luo Y, Yang J (2009) J Chem Phys 131:244505

    Article  Google Scholar 

  36. Zhang W (2009) First principles studies on chemical and electronic structures of adsorbates. Thesis. KTH Royal Institute of Technology, Stockholm

  37. Bagri A, Grantab R, Medhekar NV, Shenoy VB (2010) J Phys Chem C 114:12053

    Article  CAS  Google Scholar 

  38. Lahaye RJWE, Jeong HK, Park CY, Lee YH (2009) Phys Rev B 79:125435

    Article  Google Scholar 

  39. Lu N, Yin D, Li Z, Yang J (2011) J Phys Chem C 115:11991

    Article  CAS  Google Scholar 

  40. Yan JA, Xian L, Chou MY (2009) Phys Rev Lett 103:086802

    Article  Google Scholar 

  41. Wang L, Sun YY, Lee K, West D, Chen ZF, Zhao JJ, Zhang SB (2010) Phys Rev B 82:161406

    Article  Google Scholar 

  42. Yan JA, Chou MY (2010) Phys Rev B 82:125403

    Article  Google Scholar 

  43. Ghaderi N, Peressi M (2010) J Phys Chem C 114:21625

    Article  CAS  Google Scholar 

  44. Tang S, Zhang S (2012) Chem Phys 392:33

    Article  CAS  Google Scholar 

  45. Samarakoon DK, Wang XQ (2011) Nanoscale 3:192

    Article  CAS  Google Scholar 

  46. Nakajima T, Mabuchi Hagiwara R (1988) Carbon 26(3):357

    Article  CAS  Google Scholar 

  47. Boukhvalov DW, Katsnelson MI (2008) J Am Chem Soc 130:10697

    Article  CAS  Google Scholar 

  48. Liu L, Wang L, Gao J, Zhao J, Gao X, Chen Z (2012) Carbon 50:1690

    Article  CAS  Google Scholar 

  49. Boukhvalov DW (2010) Phys Chem Chem Phys 12:15367

    Article  CAS  Google Scholar 

  50. Cai W, Piner RD, Stadermann FJ, Park S, Shaibat MA, Ishii Y, Yang D, Velamakanni A, An SJ, Stoller M, An J, Chen D, Ruoff RS (2008) Science 321:1815

    Article  CAS  Google Scholar 

  51. Bagri A, Mattevi C, Acik M, Chabal YJ, Chhowalla M, Shenoy VB (2010) Nat Chem 2:581

    Article  CAS  Google Scholar 

  52. Mao S, Pu H, Chen J (2012) RSC Adv 2:2643

    Article  CAS  Google Scholar 

  53. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CAJ, Ruoff RS (2009) Carbon 47:145

    Article  CAS  Google Scholar 

  54. Akhavan O (2010) Carbon 48:509

    Article  CAS  Google Scholar 

  55. Mattevi C, Eda G, Agnoli S, Miller S, Mkhoyan KA, Celik O, Mastriguivannu, Granozzi G, Garfunkel E, Chhowalla M (2009) Adv Funct Mater 19:2577

    Article  CAS  Google Scholar 

  56. Larciprete R, Fabris S, Sun T, Lacovig P, Baraldi A, Lizzit S (2011) J Am Chem Soc 133(43):17315

    Article  CAS  Google Scholar 

  57. Ganguly A, Sharma S, Papakonstantinou P, Hamilton J (2011) J Phys Chem C 115:17009

    Article  CAS  Google Scholar 

  58. Acik M, Mattevi C, Gong C, Lee G, Cho K, Chhowalla M, Chabal YJ (2010) ACS Nano 4(10):5861

    Article  CAS  Google Scholar 

  59. Proctor A, Sherwood PMA (1982) J Electron Spectrosc Relat Phenom 27:39

    Article  CAS  Google Scholar 

  60. Fuente E, Menendez JA, Diez MA, Suarez D, Montes-Moran MA (2003) J Phys Chem B 107:6350

    Article  CAS  Google Scholar 

  61. He H, Klinowski J, Forster M, Lerf A (1998) Chem Phys Lett 287:53

    Article  CAS  Google Scholar 

  62. Orrego JF, Zapata F, Truong TN, Mondragón F (2009) J Phys Chem A 113:8415

    Article  CAS  Google Scholar 

  63. Radovic LR (2009) J Am Chem Soc 131:17166

    Article  CAS  Google Scholar 

  64. Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501

    Article  CAS  Google Scholar 

  65. Thrower PA (1969) In: Walker PL Jr (ed) Chemistry and physics of carbon, vol 5. Dekker, New York

    Google Scholar 

  66. Sun T, Fabris S, Baroni S (2011) J Phys Chem C 115:4730

    Article  CAS  Google Scholar 

  67. Carlsson JM, Hanke F, Linic S, Scheffler M (2009) Phys Rev Lett 102:166104

    Article  Google Scholar 

  68. Gomez-Navarro C, Meyer JC, Sundaram RS, Chuvilin A, Kurasch S, Burghard M, Klaus K, Ute K (2010) Nano Lett 10(4):1144

    Article  CAS  Google Scholar 

  69. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven, T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople, JA (2004) Gaussian 03, revision C.02, Gaussian, Inc., Wallingford

  70. Koopmans T (1933) Physica 1:104

    Article  CAS  Google Scholar 

  71. Scott AP, Radom L (1996) J Phys Chem 100(41):16505

    Article  Google Scholar 

  72. Brodie BC (1860) Ann Chem Phys 59:466

    Google Scholar 

  73. Proctor A, Sherwood PMA (1982) Anal Chem 54:13

    Article  CAS  Google Scholar 

  74. Briggs D, Grant JT (2003) Surface analysis by Auger and X-ray photoelectron spectroscopy. IM Publications and Surface Spectra Ltd, Manchester, p 401

  75. Kohiki S, Oki K (1984) J Electron Spectrosc Relat Phenom 33:375

    Article  CAS  Google Scholar 

  76. Takabayashi S, Okamoto K, Motomitsu K, Terayama A, Nakatani T, Sakaue H, Suzuki H, Takahagi T (2008) Appl Suf Sci 254:2666

    Article  CAS  Google Scholar 

  77. Nikitin A, Ogasawara H, Mann D, Denecke R, Zhang Z, Dai H, Cho K, Nilsson A (2005) Phys Rev Lett 95:225507

    Article  CAS  Google Scholar 

  78. Radovic L, Suárez A, Vallejos F, Sofo J (2011) Carbon 49(13):4226

    Article  CAS  Google Scholar 

  79. Szabó T, Berkesi O, Dékány I (2005) Carbon 43:3181

    Article  Google Scholar 

  80. Subrahmanyam KS, Kumar P, Maitra U, Govindaraj A, Hembram KPSS, Waghmare UV, Rao CNR (2011) Proc Natl Acad Sci 108(7):2674

    Article  CAS  Google Scholar 

  81. Elias DC, Nair RR, Mohiuddin TMG, Morozov SV, Blake P, Halsall MP, Ferrari AC, Boukhvalov DW, Katsnelson MI, Geim AK, Novoselov KS (2009) Science 323:610

    Article  CAS  Google Scholar 

  82. Radovic L, Silva AB, Vallejos F (2011) Carbon 49(13):4218

    Article  CAS  Google Scholar 

  83. Yang RT, Wong C (1981) J Chem Phys 75:4471

    Article  CAS  Google Scholar 

  84. Trick KA, Saliba TE (1995) Carbon 33(11):1509

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Kagoshima University in Japan for measuring samples by XPS. Graphite was provided by Nippon Graphite Industries, Ltd. This work was supported by Chemical Evaluation and Research Institute in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhiro Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, Y., Yasuda, H., Murota, K. et al. Analysis of heat-treated graphite oxide by X-ray photoelectron spectroscopy. J Mater Sci 48, 8171–8198 (2013). https://doi.org/10.1007/s10853-013-7630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7630-0

Keywords

Navigation