Skip to main content

Advertisement

Log in

Evaluating climate change impacts on Alpine floodplain vegetation

  • PLANTS IN HYDROSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

This study aims to evaluate the long-term impacts of climate change on Alpine riparian vegetation. Special attention is given to the hydrological factors influencing the establishment, development, and retrogression of riparian vegetation. The study has been carried out in a reach of the upper course of the Drau River (Austria). Long-term effects of climate change on the local riparian vegetation were simulated using a dynamic vegetation model. The model simulates annual time steps, and provides the spatial and quantitative vegetation distribution changes over time. Climate change impacts have been estimated by performing five simulations, spanning 31 years. The first simulation was based on the reference period 1960–1990 while the remaining four were based on the sub-scenarios of the IPCC storyline A1B. Simulation results show consistent variations in both the distributions of quantitative and spatio-temporal vegetation type, primarily due to peak discharges alterations rather than to the mean spring discharges which typically influence the recruitment. Climate change scenarios forecasting an overall increase of peak discharge lead to prevailing retrogression as opposed to successional processes. Conversely, in the climate change scenarios with peak flow reduction, successional processes are dominant and vegetation is predicted to expand into the active channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Anderson, B. G., I. D. Rutherfurd & A. W. Western, 2006. An analysis of the influence of riparian vegetation on the propagation of flood waves. Environmental Modelling and Software 21: 1290–1296.

    Article  Google Scholar 

  • Azami, K., H. Suzuki & S. Toki, 2004. Changes in riparian vegetation communities below a large dam in a monsoonal region: futase Dam, Japan. River Research and Applications 20: 549–563.

    Article  Google Scholar 

  • Bejarano, M. D., C. Nilsson, M. González Del Tánago & M. Marchamalo, 2011. Responses of riparian trees and shrubs to flow regulation along a boreal stream in northern Sweden. Freshwater Biology 56(5): 853–866.

    Article  Google Scholar 

  • Bendix, J., 1999. Stream power influence on southern California riparian vegetation. Journal of Vegetation Science 10: 243–252.

    Article  Google Scholar 

  • Bendix, J. & C. R. Hupp, 2000. Hydrological and geomorphological impacts on riparian plant communities. Hydrological Processes 14: 2977–2990.

    Article  Google Scholar 

  • Benjankar, R., 2009. Quantification of Reservoir Operation-Based Losses to Floodplain Physical Processes and Impact on the Floodplain Vegetation at Kootenai River, USA. University of Idaho, Moscow.

    Google Scholar 

  • Benjankar, R., N. F. Glenn, G. Egger, K. Jorde & P. Goodwin, 2010. Comparison of field-observed and simulated map output from a dynamic floodplain vegetation model using remote sensing and GIS techniques. GIScience & Remote Sensing 47: 480–497.

    Article  Google Scholar 

  • Benjankar, R., G. Egger, K. Jorde, P. Goodwin & N. F. Glenn, 2011. Dynamic floodplain vegetation model development for the Kootenai River, USA. Journal of Environmental Management 92: 3058–3070.

    Article  PubMed  Google Scholar 

  • Benjankar, R., K. Jorde, E. M. Yager, G. Egger, P. Goodwin & N. F. Glenn, 2012. The impact of river modification and dam operation on floodplain vegetation succession trends in the Kootenai River, USA. Ecological Engineering 46: 88–97.

    Article  Google Scholar 

  • BMLFUW, 2010. Hydrographisches Jahrbuch von Österreich 2008. Abteilung VII 3: Wasserhaushalt BMLFUW, 116. Band, Wien.

  • Böhm, R., 2008. Hard and soft facts concerning climate change: an overview. ÖWAV (Hrsg.): Auswirkungen des Klimawandels auf die österreichische Wasserwirtschaft, BMLFUW und ÖWAV, Wien [in German].

  • Böhm, R., Godina, R., Nachtnebel, H.-P., Pirker, O., 2008. Mögliche Klimafolgen für die Wasserwirtschaft in Österreich. In ÖWAV (Hrsg.): Auswirkungen des Klimawandels auf die österreichische Wasserwirtschaft, BMLFUW und ÖWAV, Wien.

  • Braatne, J. H., R. Jamieson, M. Gill & S. B. Rood, 2007. Instream flows and the decline of riparian cottonwoods along the Yakima River, Washington, USA. River Research and Applications 267: 247–267.

    Article  Google Scholar 

  • Camporeale, C., E. Perucca, L. Ridolfi & A. M. Gurnell, 2013. Modeling the interactions between river morphodynamics and riparian vegetation. Reviews of Geophysics 51(2013): 1–36.

    Google Scholar 

  • Carter T. R., Hulme M., Lal M., 1999. Guidelines on the use of scenario data for climate impact and adaptation assessment. Version 1. Change, IPoC (eds), Intergovernmental Panel On Climate Change: 69 pp. [in page 7].

  • Clements, F. E., 1916. Plant Succession an Analysis of the Development of Vegetation. Carnegie Institution of Washington, Washington, DC.

    Book  Google Scholar 

  • Cleveland, W. S., Grosse, E. & Shyu, W. M., 1992. Local regression models. Statistical Models in S, Chapter 8. Chapman & Hall, London.

  • De Kok, J. L. & M. Booij, 2009. Deterministic-statistical model coupling in a DSS for river-basin management. Environmental Modeling and Assessment 14(5): 595–606.

    Article  Google Scholar 

  • Dixon, M. D. & M. G. Turner, 2006. Simulated Recruitment of riparian trees and shrubs under natural and regulated flow regimes on the Wisconsin River, USA. River Research and Applications 22: 1057–1083.

    Article  Google Scholar 

  • Edwards, P. J., J. Kollmann, A. M. Gurnell, G. E. Petts, K. Tockner & J. V. Ward, 1999. A conceptual model of vegetation dynamics on gravel bars of a large Alpine river. Wetlands Ecology and Management 7: 141–153.

    Article  Google Scholar 

  • Egger, G., E. Politti, H. Woo, K. -H. Cho, M. Park, H. Cho, R. Benjankar, N. Lee & H. Lee, 2012. Dynamic vegetation model as a tool for ecological impact assessments of dam operation. Journal of Hydro-Environment Research 6: 151–161.

    Article  Google Scholar 

  • Egger, G., Politti, E., Garófano-Gómez, V., Blamauer B., Ferreira M. T., Rivaes, R., Benjankar, R., Habersack, H., 2013. Embodying interactions of riparian vegetation and fluvial processes into a dynamic floodplain model: concepts and applications. In Maddock I., A. Harby, P. Kemp & P. Wood (eds) Ecohydraulics: An Integrated Approach. Wiley, Chichester.

  • Formayer, H., Kromp-Kolb, H., 2007. Effects of climate change on floods in Upper Austria. Band 2 der Forschungsreihe: Auswirkungen des Klimawandels auf Oberösterreich. Institut für Meteorologie BOKU, Wien [in German]

  • Friedman, M. J., W. R. Osterkamp & M. L. Lewis, 1996. Channel narrowing and vegetation development following a great plains flood. Ecology 77: 2167–2181.

    Article  Google Scholar 

  • Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.

    Article  Google Scholar 

  • García-Arias, A., F. Francés, T. Ferreira, G. Egger, F. Martínez-Capel, V. Garófano-Gómez, I. Andrés-Doménech, E. Politti, R. Rivaes & P. M. Rodríguez-González, 2012. Implementing a dynamic riparian vegetation model in three European river systems. Ecohydrology 6(4): 635–651.

    Article  Google Scholar 

  • Gobiet, A., Truhetz, H., 2008. Climate models, climate scenarios and their importance for Austria. In ÖWAV (Hrsg.): Auswirkungen des Klimawandels auf die österreichische Wasserwirtschaft, BMLFUW und ÖWAV, Wien [in German].

  • Grabherr, G., M. Gottfried & H. Pauli, 2010. Climate change impacts in alpine environments. Geography 8: 1133–1153.

    Google Scholar 

  • Graf, M., 1992. Morphological characterization of the Upper Drau River: basics for the water management concept. Diplomarbeit am Institut für Wasserwirtschaft, Hydrologie und konstruktivem Wasserbau, Universität für Bodenkultur Wien [in German].

  • Gurnell, A. M., H. Piegay, F. J. Swanson & S. V. Gregory, 2002. Large wood and fluvial processes. Freshwater Biology 47: 601–619.

    Article  Google Scholar 

  • Gurnell, A. M., N. Surian & L. Zanoni, 2009. Multi-thread river channels: a perspective on changing European alpine river systems. Aquatic Sciences 71: 253–265.

    Article  Google Scholar 

  • Habersack, H., Wagner, B., Hauer, C., Jäger, E., Krapesch, G., Strahlhofer, L., Volleritsch, M., Holzapfel, P., Schmutz, S., Schinegger, R., Pletterbauer, F., Formayer H., Gerersdorfer, T., Pospichal, B., Prettenthaler, F., Steiner, D., Köberl, J., Rogler, N., 2011. DSS_KLIM:EN: Entwicklung eines Decision Support Systems zur Beruteilung der Wechselwirkungen zwischen Klimawandel, Energie aus Wasserkraft und Ökologie. Enbericht. Studie im Auftrag der Kommunalkredit Austria AG, gefördert vom Klima- und Energiefonds, Wien: 132 pp.

  • Harper, E. B., J. C. Stella & A. K. Fremier, 2011. Global sensitivity analysis for complex ecological models: a case study of riparian cottonwood population dynamics. Ecological Applications: A Publication of the Ecological Society of America 21: 1225–1240.

    Article  Google Scholar 

  • Hohensinner, S., G. Haidvogl, M. Jungwirth, S. Muhar, S. Preis & S. Schmutz, 2005. Historical analysis of habitat turnover and age distributions as a reference for restoration of Austrian Danube floodplains. WIT Transactions on Ecology and the Environment 83: 489–502.

    Google Scholar 

  • IBM Corp. Released, 2011. IBM SPSS Statistics for Windows, Version 20.0. IBM Corp., Armonk, NY.

  • IPCC, 2001. In Houghton J. T., Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, & X. Dai, et al. (eds), Climate change 2001: the scientific basis, first. Cambridge University Press, Cambridge, UK and New York, NY, USA.

  • Karrenberg, S. & M. Suter, 2003. Phenotypic trade-offs in the sexual reproduction of Salicaceae from flood plains. American Journal of Botany 90: 749–754.

    Article  PubMed  Google Scholar 

  • Karrenberg, S., P. J. Edwards & J. Kollmann, 2002. The life history of Salicaceae living in the active zone of floodplains. Freshwater Biology 47: 733–748.

    Article  Google Scholar 

  • Kranzl, L., Haas, R., Kalt, G., Müller, A., Nakicenovic, N., Redl, C., Formayer, H., Haas, P., Lexer, M. -J., Seidl, R., Schörghuber, S., Nachtnebel, H. P., Stanzel, P., 2010. Ableitung von prioritären Maßnahmen zur Adaption des Energiesystems an den Klimawandel: “KlimAdapt”-Endbericht Klima-und Energiefonds des Bundes, 225S.

  • Kovalchik, B. L. & R. R. Clausnitzer., 2004. Classification and management of aquatic, riparian, and wetland sites on the National Forests of eastern Washington: series description, United States Department of Agriculture, Forest Service, Pacific Northwest Research Station. General Technical Report PNW-GTR-593, Portland, pp 354.

  • Kundzewicz, Z. W., 2008. Climate change impacts on the hydrological cycle. Ecohydrology and Hydrobiology 8: 195–203.

    Article  CAS  Google Scholar 

  • Lytle, D. A. & D. M. Merritt, 2004. Hydrologic regimes and riparian forests: a structured population model for cottonwood. Ecology 85(9): 2493–2503.

    Article  Google Scholar 

  • Mader, H., Steidl, T., Wimmer, R., 1996. Hydrological regimes of Austrian rivers: a contribution to a national River typology. Monographien Band 82, Umweltbundesamt, Wien [in German].

  • Mahoney, J. M. & S. B. Rood, 1998. Stream flow requirements for cottonwood seedling recruitment: an integrative model. Wetlands 18: 634–645.

    Article  Google Scholar 

  • McCarthy J. J., O. F. Canziani, N. A. Leary, D. J. Dokken, & K. S. White, 2001. Climate change 2001: impacts, adaptation and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press. Cambridge, UK: 1032 pp. [in page 166].

  • Merritt, D. M. & D. J. Cooper, 2000. Riparian vegetation and channel change in response to river regulation: a comparative study of regulated and unregulated streams in the Green River Basin, USA. Regulated Rivers Research and Management 564: 543–564.

    Article  Google Scholar 

  • Meyer, J. L., M. J. Sale, P. J. Mulholland & N. L. Poff, 1999. Impacts of climate change on aquatic ecosystem functioning and health. Journal of the American Water Resources Association 35: 1373–1386.

    Article  Google Scholar 

  • Moradkhani, H., R. G. Baird & S. A. Wherry, 2010. Assessment of climate change impact on floodplain and hydrologic ecotones. Journal of Hydrology 395: 264–278.

    Article  Google Scholar 

  • Murphy, M. L. & K. V. Koski, 1989. Input and depletion of woody debris in Alaska streams and implications for streamside management. North American Journal of Fisheries Management 9: 427–436.

    Article  Google Scholar 

  • Nachtnebel, H.-P., Zimmermann, E., Habersack, H., Graf, M., 1992. The water management concept, Workpackage hydrology and flood protection. Bundesministerium für Land- und Forstwirtschaft und des Amtes der Wasserwirtschaft Spittal/Drau [in German].

  • Naiman, R. J., H. Décamps & M. E. McClain, 2005. Riparia. Elsevier Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Nakicenovic, N., O. Davidson, G. Davis, A. Grübler, T. Kram, E. Lebre La Rovere, B. Metz, T. Morita, W. Pepper, H. Pitcher, A. Sankovski, P. Shukla, R. Swart, R. Watson & Z. Dadi, 2000. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Palmer, M. A., C. A. Reidy Liermann, C. Nilsson, M. Flörke, J. Alcamo, P. S. Lake & N. Bond, 2008. Climate change and the world’s river basins: anticipating management options. Frontiers in Ecology and the Environment 6: 81–89.

    Article  Google Scholar 

  • Pauli, H., M. Gottfried & G. Grabherr, 2003. Effects of climate change on the alpine and nival vegetation of the Alps. Arctic 7: 9–12.

    Google Scholar 

  • Perona, P., C. Camporeale, E. Perucca, M. Savina, P. Molnar, P. Burlando & L. Ridolfi, 2009. Modelling river and riparian vegetation interactions and related importance for sustainable ecosystem management. Aquatic Sciences: Research Across Boundaries 71(3): 266–278.

    Article  Google Scholar 

  • Polzin, M. L. & S. B. Rood, 2000. Effects of damming and flow stabilization on riparian processes and black cottonwoods along the Kootenay River. Rivers 7: 221–232.

    Google Scholar 

  • Polzin, M. L. & S. B. Rood, 2006. Effective disturbance: seedling safe sites and patch recruitment of riparian cottonwoods after a major flood of a mountain river. Wetlands 26: 965–980.

    Article  Google Scholar 

  • Primack, A. B., 2000. Simulation of climate-change effects on riparian vegetation in the Pere Marquette River, Michigan. Wetlands 20(3): 538–547.

    Article  Google Scholar 

  • Richards, K., J. Brasington & F. Hughes, 2002. Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshwater Biology 47: 559–579.

    Article  Google Scholar 

  • Rivaes, R., P. M. Rodríguez-González, A. Albuquerque, A. Pinheiro, G. Egger & M. T. Ferreira, 2013. Riparian vegetation responses to altered flow regimes driven by climate change in Mediterranean rivers. Ecohydrology 6: 413–424.

    Article  Google Scholar 

  • Schädler B., Frei C., Grebner D., & Willi H. P., 2007. Basic information for climate. Wasser Energie Luft-99. Jahrgang, Heft 1, CH-5401 Baden, Seite 58–60 [in German].

  • Schumm, S. A. & R. W. Lichty, 1965. Time, space, and causality in geomorphology. American Journal of Science 263: 110–119.

    Article  Google Scholar 

  • Shafroth, P. B., G. T. Auble, J. C. Stromberg & D. T. Patten, 1998. Establishment of woody riparian vegetation in relation to annual patterns of stream flow, Bill Williams River, Arizona. Wetlands 18: 577–590.

    Article  Google Scholar 

  • Ström, L., R. Jansson, C. Nilsson, M. E. Johansson & S. Xiong, 2011. Hydrologic effects on riparian vegetation in a boreal river: an experiment testing climate change predictions. Global Change Biology 17: 254–267.

    Article  Google Scholar 

  • Ström, L., R. Jansson & C. Nilsson, 2012. Projected changes in plant species richness and extent of riparian vegetation belts as a result of climate-driven hydrological change along the Vindel River in Sweden. Freshwater Biology 57(1): 49–60.

    Article  Google Scholar 

  • Stromberg, J. C., J. Fry & D. T. Patten, 1997. Marsh development after large floods in an alluvial, arid-land river. Wetlands 17: 292–300.

    Article  Google Scholar 

  • Stromberg, J. C., S. J. Lite, R. Marler, C. Paradzick, P. B. Shafroth, D. Shorrock, J. M. White & M. S. White, 2007. Altered stream-flow regimes and invasive plant species: the Tamarix case. Global Ecology and Biogeography 16: 381–393.

    Article  Google Scholar 

  • Stromberg, J. C., S. J. Lite & M. D. Dixon, 2010. Effects of stream flow patterns on riparian vegetation of a semiarid river: implications for a changing climate. River Research and Applications 26: 712–729.

    Google Scholar 

  • Theurillat, J. P. & A. Guisan, 2001. Potential impact of climate change on vegetation in the European Alps. Climatic Change 50: 77–109.

    Article  CAS  Google Scholar 

  • Thoms, M. C. & M. Parsons, 2002. Eco-geomorphology: an interdisciplinary approach to river science. Management 52: 113–120.

    Google Scholar 

  • Tockner, K., J. V. Ward, P. J. Edwards & J. Kollmann, 2002. Riverine landscapes: an introduction. Freshwater Biology 47: 497–500.

    Article  Google Scholar 

  • Tritthart, M., 2005. Three-dimensional numerical modelling of turbulent river flow using polyhedral finite volumes, Wiener Mitteilungen 193, TU Wien, Wien.

  • Tritthart, M., B. Schober & H. Habersack, 2011. Non-uniformity and layering in sediment transport modelling 1: flume simulations. Journal of Hydraulic Research 49(3): 325–334.

    Article  Google Scholar 

  • Ward, J. H. J., 1963. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58: 236–244.

    Article  Google Scholar 

  • Whited, D. C., M. S. Lorang, M. J. Harner, F. R. Hauer, J. S. Kimball & J. A. Stanford, 2007. Climate, hydrologic disturbance, and succession: drivers of floodplain pattern. Ecology 88: 940–953.

    Article  PubMed  Google Scholar 

  • Whittaker, R. H. & G. M. Woodwell, 1982. Retrogression and coenocline distance. Handbook of Vegetation Science 5–2: 51–70.

    Google Scholar 

  • ZAMG, 2013. Zentralanstalt fur Meteorologie un Geodynamik http://www.zamg.ac.at/cms/de/klima/informationsportal-klimawandel/klimakarten. Accessed 02 0213.

Download references

Acknowledgments

The authors would like to thank to the Carinthian government for authorizing the field work at the Drau River and we gratefully acknowledge funding through the Austrian climate and energy fonds within the ACRP program (project no. A963615). A special acknowledgment to Erwin Lautsch for the support in the data analysis and interpretation and Jeffrey Tuhtan for the finalization of the manuscript. Rui Rivaes benefited from a PhD grant from Universidade Técnica de Lisboa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Politti.

Additional information

Guest editors: M. T. Ferreira, M. O’Hare, K. Szoszkiewicz & S. Hellsten / Plants in Hydrosystems: From Functional Ecology to Weed Research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Politti, E., Egger, G., Angermann, K. et al. Evaluating climate change impacts on Alpine floodplain vegetation. Hydrobiologia 737, 225–243 (2014). https://doi.org/10.1007/s10750-013-1801-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1801-5

Keywords

Navigation