Skip to main content
Log in

First feeding diet of young brown trout fry in a temperate area: disentangling constraints and food selection

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Diet composition of newly emerged brown trout fry in natural areas remains poorly known, and foraging abilities at this early stage, although presumably reduced, are still under discussion. We have studied gut content composition of brown trout fry in a temperate area (Galicia, NW Spain) and compared it to the benthic macroinvertebrate community. Small prey such as chironomid larvae and baetid nymphs were the most important food items for newborns, some of them still presenting yolk remnants. However, the positive selection observed for Polycentropodidae and Simuliidae and the rejection of Elmidae and Leuctricidae suggest that other factors apart from size, such as locomotor abilities of fish or accessibility and antipredator behaviour of prey play an important role in feeding behaviour. Additionally, analysis of diet changes on the studied fry suggests a dramatic shift in niche breadth at the moment of complete yolk absorption, which might be related to the improvement of swimming and handling ability of fry for capturing and ingesting prey. The presence of aerial imagoes only in the stomachs of fry with no yolk provides further support to this hypothesis. Planning of restoration works on spawning grounds should then allow enough time for complete recolonization by benthic macroinvertebrates, including first instars, as searching for food in newborns is limited to the nest area due to mobility constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aas, O., W. Haider & L. Hunt, 2000. Angler responses to potential harvest regulations in a Norwegian sport fishery: a conjoint-based choice modeling approach. North American Journal of Fisheries Management 20: 940–950.

    Article  Google Scholar 

  • Amundsen, P. A., H. M. Gabler & F. J. Stalduick, 1996. A new approach to graphical analysis of feeding strategy from stomach contents data modification of the Costello (1990) method. Journal of Fish Biology 48: 607–614.

    Google Scholar 

  • Armstrong, J. D. & K. H. Nislow, 2006. Critical habitat during the transition from maternal provisioning in freshwater fish, with emphasis on Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Journal of Zoology 269: 403–413.

    Article  Google Scholar 

  • Baglinière, J. L. & G. Maisse, 1991. La truite: biologie et écologie. INRA Editions, Paris.

    Google Scholar 

  • Butler, J. R. A., A. Radford, G. Riddington & R. Laughton, 2009. Evaluating an ecosystem service provided by Atlantic salmon, sea trout and other fish species in the River Spey, Scotland: the economic impact of recreational rod fisheries. Fisheries Research 96: 259–266.

    Article  Google Scholar 

  • Cobo, F., A. Mera & M. A. González, 1999. Análisis químico y valor energético de algunas familias de insectos heterometábolos dulceacuícolas. Boletín de la Asociación Española de Entomología 23: 213–221.

    Google Scholar 

  • Cobo, F., A. Mera & M. A. González, 2000. Análisis químico y contenido energético de algunas familias de insectos holometábolos dulceacuícolas. Nova Acta Científica Compostelana 10: 1–12.

    Google Scholar 

  • Crisp, D. T., 1988. Prediction from temperature of eyeing, hatching and ‘‘swim-up’’ times for salmonid embryos. Freshwater Biology 19: 41–48.

    Article  Google Scholar 

  • Cummins, K. W. & J. C. Wuycheck, 1971. Caloric Equivalents for Investigations in Ecological Energetics. International Association of Theoretical and Applied Limnology, Mitteilungen.

    Google Scholar 

  • Cunha, I. & M. Planas, 1999. Optimal prey size for early turbot larvae (Scophthalmus maximus L.) based on mouth and ingested prey size. Aquaculture 175: 103–110.

    Article  Google Scholar 

  • Degerman, E., I. Näslund & B. Sers, 2000. Stream habitat use and diet of juvenile (0+) brown trout and grayling in sympatry. Ecology of Freshwater Fish 9: 191–201.

    Article  Google Scholar 

  • Elliott, J. M., 1986. Spatial distribution and behavioural movements of migratory trout (Salmo trutta) in a Lake District stream. Journal of Animal Ecology 55: 907–922.

    Article  Google Scholar 

  • Elliott, J. M., 1990. Mechanisms responsible for population regulation in young migratory trout Salmo trutta L. II. The role of territorial behavior. Journal of Animal Ecology 59: 803–818.

    Article  Google Scholar 

  • Elliott, J. M., 1994. Quantitative Ecology and the Brown Trout. Oxford University Press, Oxford.

    Google Scholar 

  • Elliott, J. M. & M. A. Hurley, 1998. An individual-based model for predicting the emergence period of sea trout fry in a Lake District stream. Journal of Fish Biology 53: 414–433.

    Article  Google Scholar 

  • Fahy, E., 1980. Prey selection by young trout fry (Salmo trutta). Journal of Zoology 190: 27–37.

    Article  Google Scholar 

  • García de Leániz, C., N. Fraser & F. A. Huntingford, 2000. Variability in performance in wild Atlantic salmon, Salmo salar L., fry from a single redd. Fisheries Management and Ecology 7: 489–502.

    Article  Google Scholar 

  • Geurden, I., M. Aramendi, J. Zambonino-Infante & S. Panserat, 2007. Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 292: 2275–2283.

    Google Scholar 

  • Greenland, D. C. & A. E. Thomas, 1972. Swimming speed of fall Chinook salmon (Oncorhynchus tshawytscha) fry. Transactions of the American Fisheries Society 101: 696–700.

    Article  Google Scholar 

  • Hale, M. E., 1999. Locomotor mechanics during early life history: effects of size and ontogeny on faststart performance of salmonid fishes. Journal of Experimental Biology 202: 1465–1479.

    PubMed  Google Scholar 

  • Hendry, A. P., J. E. Hensleigh & R. R. Reisenbichler, 1998. Incubation temperature, developmental biology, and the divergence of sockeye salmon (Oncorhynchus nerka) within Lake Washington. Canadian Journal of Fisheries and Aquatic Sciences 55: 1387–1394.

    Article  Google Scholar 

  • Houde, E. D. & R. C. Schekter, 1980. Feeding by marine fish larvae: developmental and functional responses. Environmental Biology of Fishes 5: 315–334.

    Article  Google Scholar 

  • Hubert, W. A., D. D. Harris & H. A. Rhodes, 1993. Variation in the summer diet of age-0 brown trout in a regulated mountain stream. Hydrobiologia 259: 179–185.

    Article  Google Scholar 

  • Hunter, J. R., 1981. Feeding ecology and predation of marine fish larvae. In Lasker, R. (ed.), Marine Fish Larvae—Morphology, Ecology, and Relation to Fisheries. University of Washington Press, Seattle & London: 33–79.

    Google Scholar 

  • Ivlev, V. S., 1961. Experimental Ecology of the Feeding of Fishes (translated from the Russian by Douglas Scott). Yale University Press, New Haven.

    Google Scholar 

  • Jensen, A. J., B. O. Johnson & T. G. Heggberget, 1991. Initial feeding time of Atlantic salmon, Salmo salar, alevins compared to river flow and water temperature in Norwegian streams. Environmental Biology of Fishes 30: 379–385.

    Article  Google Scholar 

  • Kane, T. R., 1988. Relationship of temperature and time of initial feeding of Atlantic salmon. The Progressive Fish-Culturist 50: 93–97.

    Article  Google Scholar 

  • Keeley, E. R. & J. W. Grant, 1997. Allometry of diet selectivity in juvenile Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 54: 1894–1902.

    Article  Google Scholar 

  • King, A. J., 2005. Ontogenetic dietary shifts of fishes in an Australian floodplain river. Marine and Freshwater Research 56: 215–225.

    Article  Google Scholar 

  • McCormack, J. C., 1962. The food young trout (Salmo trutta) in two different necks. Journal of Animal Ecology 31: 305–316.

    Article  Google Scholar 

  • Nikcevic, M., B. Mickovic, A. Hegedis & R. K. Andjus, 1998. Feeding habits of huchen Hucho hucho (Salmonidae) fry in the River Tresnjica, Yugoslavia. The Italian Journal of Zoology 65: 231–233.

    Article  Google Scholar 

  • Novales-Flamarique, I. & C. W. Hawryshyn, 1996. Retinal development and visual sensitivity of young Pacific sockeye salmon (Oncorhynchus nerka). Journal of Experimental Biology 199: 869–882.

    Google Scholar 

  • O’Brien, W. J., 1979. The predator–prey interaction of planktivorous fish and zooplankton American. Scientist 67: 572–581.

    Google Scholar 

  • Ochs, G., 1969. The ecology and ethology of whirligig beetles. Archiv für Hydrobiologie 37: 375–404.

    Google Scholar 

  • Ogle, D. H., 2009. The effect of freezing on the length and weight measurements of ruffe (Gymnocephalus cernuus). Fisheries Research 99: 244–247.

    Article  Google Scholar 

  • Ojanguren, A. F. & F. Braña, 2003. Thermal dependence of embryonic growth and development in brown trout. Journal of Fish Biology 62: 580–590.

    Article  Google Scholar 

  • Ojanguren, A. F., F. G. Reyes-Gavilán & F. Braña, 2001. Thermal sensitivity of growth, food intake and activity of juvenile brown trout. Journal of Thermal Biology 26: 165–170.

    Article  PubMed  Google Scholar 

  • Oscoz, J., M. C. Escala & F. Campos, 2000. La alimentación de la trucha común (Salmo trutta L., 1758) en un río de Navarra (N. España). Limnetica 18: 29–35.

    Google Scholar 

  • Oscoz, J., P. M. Leunda, F. Campos, M. C. Escala & R. Miranda, 2005. Diet of 0+ brown trout (Salmo trutta L., 1758) from the river Erro (Navarra, North of Spain). Limnetica 24: 319–326.

    Google Scholar 

  • Power, G., 1992. Seasonal growth and diet of juvenile chinook salmon (Oncorhynchus tshawytscha) in demonstration channels and the main channel of the Waitaki river, New Zealand 1982–1983. Ecology of Freshwater Fish 1: 12–25.

    Article  Google Scholar 

  • Raciborski, K., 1987. Energy and protein transformation in sea trout (Salmo trutta L.) larvae during transition from yolk to external food. Polskie Archiwum Hydrobiologii 34: 437–502.

    Google Scholar 

  • Reiriz, L., A. G. Nicieza & F. Braña, 1998. Prey selection by experienced and naive juvenile Atlantic salmon. Journal of Fish Biology 53: 100–114.

    Article  Google Scholar 

  • Rincón, P. A. & J. Lobón-Cerviá, 1999. Prey size selection by brown trout (Salmo trutta L.) in a stream in northern Spain. Canadian Journal of Zoology 77: 755–765.

    Article  Google Scholar 

  • Río-Barja, F. J. & F. Rodríguez-Lestegás, 1992. Os Ríos Galegos. Morfoloxía e Réxime. Concello da Cultura Galega, Santiago de Compostela.

    Google Scholar 

  • Ruginis, T., 2008. Diet and prey selectivity by age-0 brown trout (Salmo trutta L.) in different lowland streams of Lithuania. Acta Zoologica Lituanica 18: 140–146.

    Article  Google Scholar 

  • Schael, D. M., L. G. Rudstam & J. R. Post, 1991. Gape limitation and prey selection in larval yellow perch (Perca flavescens), freshwater drum (Aplodinotus grunniens), and black crappie (Pomoxis nigromaculatus). Canadian Journal of Fisheries and Aquatic Sciences 48: 1919–1925.

    Article  Google Scholar 

  • Shirota, A., 1970. Studies on the mouth size of fish larvae. Bulletin of the Japanese Society of Scientific Fisheries 36: 353–368.

    Google Scholar 

  • Skoglund, H. & B. T. Barlaup, 2006. Feeding pattern and diet of first feeding brown trout fry under natural conditions. Journal of Fish Biology 68: 507–521.

    Article  Google Scholar 

  • Thomas, A. E., J. L. Banks & D. C. Greenland, 1969. Effect of yolk sac absorption on the swimming ability of fall Chinook salmon. Transactions of the American Fisheries Society 98: 406–410.

    Article  Google Scholar 

  • Thorpe, J. E., M. S. Miles & D. S. Keay, 1984. Developmental rate, fecundity and egg size in Atlantic salmon, Salmo salar L. Aquaculture 43: 289–305.

    Article  Google Scholar 

  • Titus, R. G., 1990. Territorial behavior and its role in population regulation of young brown trout (Salmo trutta)—new perspectives. Annales Zoologici Fennici 27: 119–130.

    Google Scholar 

  • Tonkin, Z. D., P. Humphries & P. A. Pridmore, 2006. Ontogeny of feeding in two native and one alien fish species from the Murray-Darling Basin, Australia. Environmental Biology of Fishes 76: 303–315.

    Article  Google Scholar 

  • Wainwright, P. C. & B. A. Richard, 1995. Predicting patterns of prey use from morphology of fishes. Environmental Biology of Fishes 44: 97–113.

    Article  Google Scholar 

  • Ward, F. J. & B. R. McCulloch, 1991. Relationship between mouth gape of juvenile walleye (Stizostedion vitreum vitreum) and prey size. Verhandlungen, internationale Vereinigung fur theoretische und angewandte Limnologie 24: 2362–2364.

    Google Scholar 

  • Zimmerman, C. E. & H. Mosegaard, 1992. Initial feeding in migratory brown trout (Salmo trutta L.) alevins. Journal of Fish Biology 40: 647–650.

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work has been carried out in the laboratories of the Station of Hydrobiology of USC “Encoro do Con” in Vilagarcía de Arousa. This work has been partially supported by the project INCITE09203072PR of the Xunta de Galicia. The authors are also grateful to two anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Sánchez-Hernández.

Additional information

Handling editor: J. A. Cambray

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sánchez-Hernández, J., Vieira-Lanero, R., Servia, M.J. et al. First feeding diet of young brown trout fry in a temperate area: disentangling constraints and food selection. Hydrobiologia 663, 109–119 (2011). https://doi.org/10.1007/s10750-010-0582-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-010-0582-3

Keywords

Navigation