Skip to main content
Log in

A Quantum-Bayesian Route to Quantum-State Space

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent’s personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum Bayesianism. The starting point is the representation of quantum states induced by a symmetric informationally complete measurement or SIC. In this representation, the Born rule takes the form of a particularly simple modification of the law of total probability. We show how to derive key features of quantum-state space from (i) the requirement that the Born rule arises as a simple modification of the law of total probability and (ii) a limited number of additional assumptions of a strong Bayesian flavor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Caves, C.M., Fuchs, C.A., Schack, R.: Unknown quantum states: the quantum de Finetti representation. J. Math. Phys. 43, 4537 (2002)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Fuchs, C.A.: Notes on a Paulian Idea: Foundational, Historical, Anecdotal & Forward-Looking Thoughts on the Quantum. Växjö University Press, Växjö (2003). With foreword by N. David Mermin. Preprinted as arXiv:quant-ph/0105039v1 (2001)

    Google Scholar 

  3. Schack, R., Brun, T.A., Caves, C.M.: Quantum Bayes rule. Phys. Rev. A 64, 014305 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  4. Fuchs, C.A.: Quantum mechanics as quantum information (and only a little more). arXiv:quant-ph/0205039v1 (2002); abridged version in: Khrennikov, A. (ed.) Quantum Theory: Reconsideration of Foundations, pp. 463–543. Växjö University Press, Växjö (2002)

  5. Fuchs, C.A.: Quantum mechanics as quantum information, mostly. J. Mod. Opt. 50, 987 (2003)

    MATH  ADS  Google Scholar 

  6. Schack, R.: Quantum theory from four of Hardy’s axioms. Found. Phys. 33, 1461 (2003)

    Article  MathSciNet  Google Scholar 

  7. Fuchs, C.A., Schack, R.: Unknown quantum states and operations, a Bayesian view. In: Paris, M.G.A., Řeháček, J. (eds.) Quantum Estimation Theory, pp. 151–190. Springer, Berlin (2004)

    Google Scholar 

  8. Caves, C.M., Fuchs, C.A., Schack, R.: Subjective probability and quantum certainty. Stud. Hist. Philos. Mod. Phys. 38, 255 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Appleby, D.M.: Facts, values and quanta. Found. Phys. 35, 627 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  10. Appleby, D.M.: Probabilities are single-case, or nothing. Opt. Spectrosc. 99, 447 (2005)

    Article  ADS  Google Scholar 

  11. Timpson, C.J.: Quantum Bayesianism: a study. Stud. Hist. Philos. Mod. Phys. 39, 579 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fuchs, C.A., Schack, R.: Quantum-Bayesian coherence. Rev. Mod. Phys. (2009, submitted). arXiv:0906.2187v1 [quant-ph]

  13. Ramsey, F.P.: Truth and probability. In: Braithwaite, R.B. (ed.) The Foundations of Mathematics and Other Logical Essays, pp. 156–198. Harcourt Brace, New York (1931)

    Google Scholar 

  14. de Finetti, B.: Probabilismo. Logos 14, 163 (1931); transl., Probabilism. Erkenntnis 31, 169 (1989)

    Google Scholar 

  15. Savage, L.J.: The Foundations of Statistics. Wiley, New York (1954)

    MATH  Google Scholar 

  16. de Finetti, B.: Theory of Probability. Wiley, New York (1990), 2 volumes

    MATH  Google Scholar 

  17. Bernardo, J.M., Smith, A.F.M.: Bayesian Theory. Wiley, Chichester (1994)

    Book  MATH  Google Scholar 

  18. Jeffrey, R.: Subjective Probability. The Real Thing. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  19. Logue, J.: Projective Probability. Oxford University Press, Oxford (1995)

    Google Scholar 

  20. Appleby, D.M., Flammia, S.T., Fuchs, C.A.: The Lie algebraic significance of symmetric informationally complete measurements. J. Math. Phys. (2010, submitted). arXiv:1001.0004v1 [quant-ph]

  21. Appleby, D.M., Ericsson, Å., Fuchs, C.A.: Pseudo-QBist State Spaces. Found. Phys. (2009, accepted)

  22. Skyrms, B.: Coherence. In: Rescher, N. (ed.) Scientific Inquiry in Philosophical Perspective, pp. 225–242. University of Pittsburgh Press, Pittsburgh (1987)

    Google Scholar 

  23. Zauner, G.: Quantum designs—foundations of a non-commutative theory of designs (in German). PhD thesis, University of Vienna (1999)

  24. Caves, C.M.: Symmetric informationally complete POVMs. Unpublished (1999)

  25. Renes, J.M., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  26. Fuchs, C.A.: On the quantumness of a Hilbert space. Quantum. Inf. Comput. 4, 467 (2004)

    MATH  MathSciNet  Google Scholar 

  27. Appleby, D.M.: SIC-POVMs and the extended Clifford group. J. Math. Phys. 46, 052107 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  28. Appleby, D.M., Dang, H.B., Fuchs, C.A.: Physical significance of symmetric informationally-complete sets of quantum states. arXiv:0707.2071v1 [quant-ph] (2007)

  29. Scott, A.J., Grassl, M.: SIC-POVMs: a new computer study. arXiv:0910.5784v2 [quant-ph] (2009)

  30. Ferrie, C., Emerson, J.: Framed Hilbert space: hanging the quasi-probability pictures of quantum theory. New J. Phys. 11, 063040 (2009)

    Article  ADS  Google Scholar 

  31. Wootters, W.K.: Quantum mechanics without probability amplitudes. Found. Phys. 16, 391 (1986)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rüdiger Schack.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, C.A., Schack, R. A Quantum-Bayesian Route to Quantum-State Space. Found Phys 41, 345–356 (2011). https://doi.org/10.1007/s10701-009-9404-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-009-9404-8

Keywords

Navigation