Skip to main content

Advertisement

Log in

Associations of 9p21 variants with cutaneous malignant melanoma, nevi, and pigmentation phenotypes in melanoma-prone families with and without CDKN2A mutations

  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Chromosome 9p21 has been implicated in the pathogenesis of cutaneous malignant melanoma (CMM). In addition to CDKN2A, the major known high-risk susceptibility gene for CMM, recent studies suggest that other 9p21 genes may be involved in melanoma/nevi development. To identify 9p21 variants that influence susceptibility to CMM and number of nevi in CMM-prone families with and without CDKN2A mutations, we analyzed 562 individuals (183 CMM) from 53 families (23 CDKN2A+, 30 CDKN2A−) for 233 tagging SNPs in 21 genes at 9p21. Single SNP- and gene-based regression analyses were used to assess the risk of CMM, nevi count, skin complexion, and tanning ability associated with these SNPs and genes. We found that SNP rs7023329 in the MTAP gene was associated with number of nevi (P trend = 0.003) confirming a recent finding by a genome-wide association study. In addition, three SNPs in the ACO1 gene, rs7855483 (P trend = 0.002), rs17288067 (P trend = 0.0009), and rs10813813 (P trend = 0.005), showed the strongest associations with CMM risk. None of the examined 9p21 SNPs was associated with skin complexion, whereas two SNPs, rs10964862 in IFNW1 (P trend = 0.003), and rs13290968 in TUSC1 (P trend = 0.0006), were associated with tanning ability. Gene-based analyses suggested that the ACO1 gene was significantly associated with CMM (P = 0.0004); genes IFNW1 (P = 0.002) and ACO1 (P = 0.0002) were significantly associated with tanning ability. Our findings are consistent with recent proposals that additional 9p21 genes may contribute to CMM susceptibility in CMM-prone families. These genetic variants may, at least partially, exert their effects through nevi and tanning ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

CMM:

Cutaneous malignant melanoma

SNP:

Single nucleotide polymorphism

GWAS:

Genome-wide association study

MAF:

Minimum minor allele frequency

OR:

Odds ratio

95% CI:

95% Confidence interval

GEE:

Generalized estimating equations

References

  1. Tucker MA, Goldstein AM (2003) Melanoma etiology: where are we? Oncogene 22(20):3042–3052

    Article  CAS  PubMed  Google Scholar 

  2. Eliason MJ, Larson AA, Florell SR et al (2006) Population-based prevalence of CDKN2A mutations in Utah melanoma families. J Invest Dermatol 126(3):660–666

    Article  CAS  PubMed  Google Scholar 

  3. Goldstein AM (2004) Familial melanoma, pancreatic cancer and germline CDKN2A mutations. Hum Mutat 23(6):630

    Article  PubMed  Google Scholar 

  4. Rakosy Z, Vizkeleti L, Ecsedi S et al (2008) Characterization of 9p21 copy number alterations in human melanoma by fluorescence in situ hybridization. Cancer Genet Cytogenet 182(2):116–121

    Article  CAS  PubMed  Google Scholar 

  5. Zhu G, Montgomery GW, James MR et al (2007) A genome-wide scan for naevus count: linkage to CDKN2A and to other chromosome regions. Eur J Hum Genet 15(1):94–102

    Article  CAS  PubMed  Google Scholar 

  6. Falchi M, Spector TD, Perks U, Kato BS, Bataille V (2006) Genome-wide search for nevus density shows linkage to two melanoma loci on chromosome 9 and identifies a new QTL on 5q31 in an adult twin cohort. Hum Mol Genet 15(20):2975–2979

    Article  CAS  PubMed  Google Scholar 

  7. Liu L, Goldstein AM, Tucker MA et al (1997) Affected members of melanoma-prone families with linkage to 9p21 but lacking mutations in CDKN2A do not harbor mutations in the coding regions of either CDKN2B or p19ARF. Genes Chromosomes Cancer 19(1):52–54

    Article  PubMed  Google Scholar 

  8. Casula M, Ascierto PA, Cossu A et al (2003) Mutation analysis of candidate genes in melanoma-prone families: evidence of different pathogenetic mechanisms at chromosome 9P21. Melanoma Res 13(6):571–579

    Article  CAS  PubMed  Google Scholar 

  9. FitzGerald MG, Harkin DP, Silva-Arrieta S et al (1996) Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc Natl Acad Sci USA 93(16):8541–8545

    Article  CAS  PubMed  Google Scholar 

  10. Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I (2007) Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Res 67(8):3963–3969

    Article  CAS  PubMed  Google Scholar 

  11. Bishop DT, Demenais F, Iles MM et al (2009) Genome-wide association study identifies three loci associated with melanoma risk. Nat Genet 41(8):920–925

    Article  CAS  PubMed  Google Scholar 

  12. Falchi M, Bataille V, Hayward NK et al (2009) Genome-wide association study identifies variants at 9p21 and 22q13 associated with development of cutaneous nevi. Nat Genet 41(8):915–919

    Article  CAS  PubMed  Google Scholar 

  13. Stevens AP, Spangler B, Wallner S et al (2009) Direct and tumor microenvironment mediated influences of 5′-deoxy-5′-(methylthio)adenosine on tumor progression of malignant melanoma. J Cell Biochem 106(2):210–219

    Article  CAS  PubMed  Google Scholar 

  14. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH (1996) Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol 14(1):7–17

    CAS  PubMed  Google Scholar 

  15. Goldstein AM, Landi MT, Tsang S, Fraser MC, Munroe DJ, Tucker MA (2005) Association of MC1R variants and risk of melanoma in melanoma-prone families with CDKN2A mutations. Cancer Epidemiol Biomark Prev 14(9):2208–2212

    CAS  Google Scholar 

  16. Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA (2000) Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst 92(12):1006–1010

    Article  CAS  PubMed  Google Scholar 

  17. Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA (2004) Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet 74(1):106–120

    Article  CAS  PubMed  Google Scholar 

  18. Pfeiffer RM, Gail MH, Pee D (2001) Inference for covariates that accounts for ascertainment and random genetic effects in family studies. Biometrika 88:16

    Article  Google Scholar 

  19. Zeger SL, Liang KY (1986) Longitudinal data analysis for discrete and continuous outcomes. Biometrics 42(1):121–130

    Article  CAS  PubMed  Google Scholar 

  20. Allen-Brady K, Wong J, Camp NJ (2006) PedGenie: an analysis approach for genetic association testing in extended pedigrees and genealogies of arbitrary size. BMC Bioinformatics 7:209

    Article  PubMed  Google Scholar 

  21. Dudbridge F, Koeleman BP (2003) Rank truncated product of P-values, with application to genomewide association scans. Genet Epidemiol 25(4):360–366

    Article  PubMed  Google Scholar 

  22. Gandini S, Sera F, Cattaruzza MS et al (2005) Meta-analysis of risk factors for cutaneous melanoma: I. Common and atypical naevi. Eur J Cancer 41(1):28–44

    Article  PubMed  Google Scholar 

  23. Olopade OI, Pomykala HM, Hagos F et al (1995) Construction of a 2.8-megabase yeast artificial chromosome contig and cloning of the human methylthioadenosine phosphorylase gene from the tumor suppressor region on 9p21. Proc Natl Acad Sci USA 92(14):6489–6493

    Article  CAS  PubMed  Google Scholar 

  24. Hori Y, Hori H, Yamada Y et al (1998) The methylthioadenosine phosphorylase gene is frequently co-deleted with the p16INK4a gene in acute type adult T-cell leukemia. Int J Cancer 75(1):51–56

    Article  CAS  PubMed  Google Scholar 

  25. Wong YF, Chung TK, Cheung TH, Nobori T, Chang AM (1998) MTAP gene deletion in endometrial cancer. Gynecol Obstet Invest 45(4):272–276

    Article  CAS  PubMed  Google Scholar 

  26. Christopher SA, Diegelman P, Porter CW, Kruger WD (2002) Methylthioadenosine phosphorylase, a gene frequently codeleted with p16(cdkN2a/ARF), acts as a tumor suppressor in a breast cancer cell line. Cancer Res 62(22):6639–6644

    CAS  PubMed  Google Scholar 

  27. Garcia-Castellano JM, Villanueva A, Healey JH et al (2002) Methylthioadenosine phosphorylase gene deletions are common in osteosarcoma. Clin Cancer Res 8(3):782–787

    CAS  PubMed  Google Scholar 

  28. Behrmann I, Wallner S, Komyod W et al (2003) Characterization of methylthioadenosin phosphorylase (MTAP) expression in malignant melanoma. Am J Pathol 163(2):683–690

    CAS  PubMed  Google Scholar 

  29. Kadariya Y, Yin B, Tang B et al (2009) Mice heterozygous for germ-line mutations in methylthioadenosine phosphorylase (MTAP) die prematurely of T-cell lymphoma. Cancer Res 69(14):5961–5969

    Article  CAS  PubMed  Google Scholar 

  30. Toyokuni S (1996) Iron-induced carcinogenesis: the role of redox regulation. Free Radic Biol Med 20(4):553–566

    Article  CAS  PubMed  Google Scholar 

  31. Huang X (2003) Iron overload and its association with cancer risk in humans: evidence for iron as a carcinogenic metal. Mutat Res 533(1–2):153–171

    CAS  PubMed  Google Scholar 

  32. Pra D, Rech Franke SI, Pegas Henriques JA, Fenech M (2009) A possible link between iron deficiency and gastrointestinal carcinogenesis. Nutr Cancer 61(4):415–426

    Article  CAS  PubMed  Google Scholar 

  33. Stevens RG, Beasley RP, Blumberg BS (1986) Iron-binding proteins and risk of cancer in Taiwan. J Natl Cancer Inst 76(4):605–610

    CAS  PubMed  Google Scholar 

  34. Selby JV, Friedman GD (1988) Epidemiologic evidence of an association between body iron stores and risk of cancer. Int J Cancer 41(5):677–682

    Article  CAS  PubMed  Google Scholar 

  35. Stevens RG, Graubard BI, Micozzi MS, Neriishi K, Blumberg BS (1994) Moderate elevation of body iron level and increased risk of cancer occurrence and death. Int J Cancer 56(3):364–369

    Article  CAS  PubMed  Google Scholar 

  36. Knekt P, Reunanen A, Takkunen H, Aromaa A, Heliovaara M, Hakulinen T (1994) Body iron stores and risk of cancer. Int J Cancer 56(3):379–382

    Article  CAS  PubMed  Google Scholar 

  37. Herrinton LJ, Friedman GD, Baer D, Selby JV (1995) Transferrin saturation and risk of cancer. Am J Epidemiol 142(7):692–698

    CAS  PubMed  Google Scholar 

  38. Pantopoulos K (2004) Iron metabolism and the IRE/IRP regulatory system: an update. Ann NY Acad Sci 1012:1–13

    Article  CAS  PubMed  Google Scholar 

  39. Zhang KH, Tian HY, Gao X et al (2009) Ferritin heavy chain-mediated iron homeostasis and subsequent increased reactive oxygen species production are essential for epithelial-mesenchymal transition. Cancer Res 69(13):5340–5348

    Article  CAS  PubMed  Google Scholar 

  40. Boult J, Roberts K, Brookes MJ et al (2008) Overexpression of cellular iron import proteins is associated with malignant progression of esophageal adenocarcinoma. Clin Cancer Res 14(2):379–387

    Article  CAS  PubMed  Google Scholar 

  41. Holmstrom P, Gafvels M, Eriksson LC et al (2006) Expression of iron regulatory genes in a rat model of hepatocellular carcinoma. Liver Int 26(8):976–985

    Article  PubMed  Google Scholar 

  42. Baldi A, Lombardi D, Russo P et al (2005) Ferritin contributes to melanoma progression by modulating cell growth and sensitivity to oxidative stress. Clin Cancer Res 11(9):3175–3183

    Article  CAS  PubMed  Google Scholar 

  43. Tan MG, Kumarasinghe MP, Wang SM, Ooi LL, Aw SE, Hui KM (2009) Modulation of iron-regulatory genes in human hepatocellular carcinoma and its physiological consequences. Exp Biol Med (Maywood) 234(6):693–702

    Article  CAS  Google Scholar 

  44. Chen G, Fillebeen C, Wang J, Pantopoulos K (2007) Overexpression of iron regulatory protein 1 suppresses growth of tumor xenografts. Carcinogenesis 28(4):785–791

    Article  CAS  PubMed  Google Scholar 

  45. Gu F, Qureshi AA, Niu T et al (2008) Interleukin and interleukin receptor gene polymorphisms and susceptibility to melanoma. Melanoma Res 18(5):330–335

    Article  CAS  PubMed  Google Scholar 

  46. Howell WM, Turner SJ, Bateman AC, Theaker JM (2001) IL-10 promoter polymorphisms influence tumour development in cutaneous malignant melanoma. Genes Immun 2(1):25–31

    Article  CAS  PubMed  Google Scholar 

  47. Nikolova PN, Pawelec GP, Mihailova SM et al (2007) Association of cytokine gene polymorphisms with malignant melanoma in Caucasian population. Cancer Immunol Immunother 56(3):371–379

    Article  CAS  PubMed  Google Scholar 

  48. Hanneman KK, Cooper KD, Baron ED (2006) Ultraviolet immunosuppression: mechanisms and consequences. Dermatol Clin 24(1):19–25

    Article  CAS  PubMed  Google Scholar 

  49. Shan Z, Parker T, Wiest JS (2004) Identifying novel homozygous deletions by microsatellite analysis and characterization of tumor suppressor candidate 1 gene, TUSC1, on chromosome 9p in human lung cancer. Oncogene 23(39):6612–6620

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are indebted to the participating families, whose generosity and cooperation have made this study possible. We also acknowledge the contributions to this work that were made by Virginia Pichler, Deborah Zametkin, and Mary Fraser. This research was supported by the Intramural Research Program of the NIH, NCI, DCEG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Rose Yang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X.R., Liang, X., Pfeiffer, R.M. et al. Associations of 9p21 variants with cutaneous malignant melanoma, nevi, and pigmentation phenotypes in melanoma-prone families with and without CDKN2A mutations. Familial Cancer 9, 625–633 (2010). https://doi.org/10.1007/s10689-010-9356-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-010-9356-3

Keywords

Navigation