Skip to main content
Log in

Role of MTA1 in cancer progression and metastasis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The MTA1 protein contributes to the process of cancer progression and metastasis through multiple genes and protein targets and interacting proteins with roles in transformation, anchorage-independent growth, invasion, survival, DNA repair, angiogenesis, hormone independence, metastasis, and therapeutic resistance. Because the roles and clinical significance of MTA proteins in human cancer are discussed by other contributors in this issue, this review will focus on our current understanding of the underlying principles of action behind the biological effects of MTA1. MTA proteins control a spectrum of cancer-promoting processes by modulating the expression of target genes and/or the activity of MTA-interacting proteins. In the case of MTA1, these functions are manifested through posttranslational modifications of MTA1 in response to upstream signals, MTA1 interaction with binding proteins, and the expression of target gene products. Studies delineating the molecular basis of dual functionality of MTA1 reveal that the functions of MTA1-chromatin-modifying complexes in the context of target gene regulation are dynamic in nature. The nature and targets of MTA1-chromatin-modifying complexes are also governed by the dynamic plasticity of the nucleosome landscape as well as kinetics of activation and inactivation of enzymes responsible for posttranslational modifications on the MTA1 protein. These broadly applicable functions also explain why MTA1 may be a “hub” gene in cancer. Because the deregulation of enzymes and their substrates with roles in MTA1 biology is not necessarily limited to cancer, we speculate that the lessons from MTA1 as a prototype dual master coregulator will be relevant for other human diseases. In this context, the concept of the dynamic nature of corepressor versus coactivator complexes and the MTA1 proteome as a function of time to signal is likely to be generally applicable to other multiprotein regulatory complexes in living systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. The Journal of Biological Chemistry, 269(37), 22958–22963.

    CAS  PubMed  Google Scholar 

  2. Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminars in Oncology, 30(5 Suppl 16), 30–37.

    Article  CAS  PubMed  Google Scholar 

  3. Bowen, N. J., Fujita, N., Kajita, M., & Wade, P. A. (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochimica et Biophysica Acta, 1677(1–3), 52–57.

    Article  CAS  PubMed  Google Scholar 

  4. Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. The Journal of Biological Chemistry, 282(3), 1529–1533.

    Article  CAS  PubMed  Google Scholar 

  5. Singh, R. R., & Kumar, R. (2007). MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 115–125. doi:10.1007/s10911-007-9043-7.

    Article  PubMed  Google Scholar 

  6. Denslow, S. A., & Wade, P. A. (2007). The human Mi-2/NuRD complex and gene regulation. Oncogene, 26(37), 5433–5438.

    Article  CAS  PubMed  Google Scholar 

  7. Li, D. Q., Pakala, S. B., Nair, S. S., Eswaran, J., & Kumar, R. Metastasis-associated protein 1/nucleosome remodeling and histone deacetylase complex in cancer. Cancer Res, 72(2), 387–394.

  8. Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.

    Article  CAS  PubMed  Google Scholar 

  9. Li, W., Ma, L., Zhao, J., Liu, X., Li, Z., & Zhang, Y. (2009). Expression profile of MTA1 in adult mouse tissues. Tissue and Cell, 41(6), 390–399.

    Article  CAS  PubMed  Google Scholar 

  10. Liu, J., Xu, D., Wang, H., Zhang, Y., Chang, Y., Zhang, J., et al. The subcellular distribution and function of MTA1 in cancer differentiation. Oncotarget, 5(13), 5153–5164.

  11. Ohshiro, K., Rayala, S. K., Wigerup, C., Pakala, S. B., Natha, R. S., Gururaj, A. E., et al. Acetylation-dependent oncogenic activity of metastasis-associated protein 1 co-regulator. EMBO Rep, 11(9), 691–697.

  12. Kumar, R., Balasenthil, S., Manavathi, B., Rayala, S. K., & Pakala, S. B. Metastasis-associated protein 1 and its short form variant stimulates Wnt1 transcription through promoting its derepression from Six3 corepressor. Cancer Res, 70(16), 6649–6658.

  13. Kumar, R., Balasenthil, S., Pakala, S. B., Rayala, S. K., Sahin, A. A., & Ohshiro, K. Metastasis-associated protein 1 short form stimulates Wnt1 pathway in mammary epithelial and cancer cells. Cancer Res, 70(16), 6598–6608.

  14. Pakala, S. B., Rayala, S. K., Wang, R. A., Ohshiro, K., Mudvari, P., Reddy, S. D., et al. MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. Cancer Res, 73(12), 3761–3770.

  15. Zhang, X. Y., DeSalle, L. M., Patel, J. H., Capobianco, A. J., Yu, D., Thomas-Tikhonenko, A., et al. (2005). Metastasis-associated protein 1 (MTA1) is an essential downstream effector of the c-MYC oncoprotein. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 13968–13973.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Li, D. Q., Divijendra Natha Reddy, S., Pakala, S. B., Wu, X., Zhang, Y., Rayala, S. K., et al. (2009). MTA1 coregulator regulates p53 stability and function. The Journal of Biological Chemistry, 284(50), 34545–34552.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Li, D. Q., Pakala, S. B., Reddy, S. D., Ohshiro, K., Peng, S. H., Lian, Y., et al. Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. J Biol Chem, 285(13), 10044–10052.

  18. Li, D. Q., & Kumar, R. Mi-2/NuRD complex making inroads into DNA-damage response pathway. Cell Cycle, 9(11), 2071–2079.

  19. Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Yao, Y. L., & Yang, W. M. (2003). The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. The Journal of Biological Chemistry, 278(43), 42560–42568.

    Article  CAS  PubMed  Google Scholar 

  22. Liu, X. F., & Bagchi, M. K. (2004). Recruitment of distinct chromatin-modifying complexes by tamoxifen-complexed estrogen receptor at natural target gene promoters in vivo. The Journal of Biological Chemistry, 279(15), 15050–15058.

    Article  CAS  PubMed  Google Scholar 

  23. Singh, R. R., Barnes, C. J., Talukder, A. H., Fuqua, S. A., & Kumar, R. (2005). Negative regulation of estrogen receptor alpha transactivation functions by LIM domain only 4 protein. Cancer Research, 65(22), 10594–10601.

    Article  CAS  PubMed  Google Scholar 

  24. Khaleque, M. A., Bharti, A., Gong, J., Gray, P. J., Sachdev, V., Ciocca, D. R., et al. (2008). Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene, 27(13), 1886–1893.

    Article  CAS  PubMed  Google Scholar 

  25. Mishra, S. K., Mazumdar, A., Vadlamudi, R. K., Li, F., Wang, R. A., Yu, W., et al. (2003). MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions. The Journal of Biological Chemistry, 278(21), 19209–19219.

    Article  CAS  PubMed  Google Scholar 

  26. Talukder, A. H., Gururaj, A., Mishra, S. K., Vadlamudi, R. K., & Kumar, R. (2004). Metastasis-associated protein 1 interacts with NRIF3, an estrogen-inducible nuclear receptor coregulator. Molecular and Cellular Biology, 24(15), 6581–6591.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Talukder, A. H., Mishra, S. K., Mandal, M., Balasenthil, S., Mehta, S., Sahin, A. A., et al. (2003). MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions. The Journal of Biological Chemistry, 278(13), 11676–11685.

    Article  CAS  PubMed  Google Scholar 

  28. Covington, K. R., Brusco, L., Barone, I., Tsimelzon, A., Selever, J., Corona-Rodriguez, A., et al. Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Res Treat. doi:10.1007/s10549-013-2709-5.

  29. Cui, Y., Niu, A., Pestell, R., Kumar, R., Curran, E. M., Liu, Y., et al. (2006). Metastasis-associated protein 2 is a repressor of estrogen receptor alpha whose overexpression leads to estrogen-independent growth of human breast cancer cells. Molecular Endocrinology, 20(9), 2020–2035.

    Article  CAS  PubMed  Google Scholar 

  30. Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113(2), 207–219.

    Article  CAS  PubMed  Google Scholar 

  31. Kumar, R. (2003). Another tie that binds the MTA family to breast cancer. Cell, 113(2), 142–143.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research, 12(5), 1479–1486.

    Article  CAS  PubMed  Google Scholar 

  33. Kumar, R., Wang, R. A., Mazumdar, A., Talukder, A. H., Mandal, M., Yang, Z., et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 418(6898), 654–657.

    Article  CAS  PubMed  Google Scholar 

  34. Mishra, S. K., Yang, Z., Mazumdar, A., Talukder, A. H., Larose, L., & Kumar, R. (2004). Metastatic tumor antigen 1 short form (MTA1s) associates with casein kinase I-gamma2, an estrogen-responsive kinase. Oncogene, 23(25), 4422–4429.

    Article  CAS  PubMed  Google Scholar 

  35. Gururaj, A. E., Singh, R. R., Rayala, S. K., Holm, C., den Hollander, P., Zhang, H., et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6670–6675.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Zhou, J., Zhan, S., Tan, W., Cheng, R., Gong, H., & Zhu, Q. P300 binds to and acetylates MTA2 to promote colorectal cancer cells growth. Biochem Biophys. Res Commun, 444(3), 387–390.

  37. Li, D. Q., Ohshiro, K., Reddy, S. D., Pakala, S. B., Lee, M. H., Zhang, Y., et al. (2009). E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17493–17498.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Cong, L., Pakala, S. B., Ohshiro, K., Li, D. Q., & Kumar, R. SUMOylation and SUMO-interacting motif (SIM) of metastasis tumor antigen 1 (MTA1) synergistically regulate its transcriptional repressor function. J Biol Chem, 286(51), 43793–43808.

  39. Van Rechem, C., Boulay, G., Pinte, S., Stankovic-Valentin, N., Guerardel, C., & Leprince, D. Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol Cell Biol, 30(16), 4045–4059.

  40. Nair, S. S., Li, D. Q., & Kumar, R. A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol Cell, 49(4), 704–718.

  41. http://www.nursa.org/

  42. Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. The EMBO Journal, 25(6), 1231–1241.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Deng, X., Du, L., Wang, C., Yang, Y., Li, J., Liu, H., et al. Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. World J Surg, 37(4), 792–798.

  44. Jang, K. S., Paik, S. S., Chung, H., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Science, 97(5), 374–379.

    Article  CAS  PubMed  Google Scholar 

  45. Li, S. H., Tian, H., Yue, W. M., Li, L., Gao, C., et al. (2012). Metastasis-associated protein 1 nuclear expression is closely associated with tumor progression and angiogenesis in patients with esophageal squamous cell cancer. World Journal of Surgery, 36(3), 623–631.

    Article  CAS  PubMed  Google Scholar 

  46. Li, S. H., Tian, H., Yue, W. M., Li, L., Li, W. J., Chen, Z. T., et al. (2011). Overexpression of metastasis-associated protein 1 is significantly correlated with tumor angiogenesis and poor survival in patients with early-stage non-small cell lung cancer. Annals of Surgical Oncology, 18(7), 2048–2056.

    Article  PubMed  Google Scholar 

  47. Kai, L., Wang, J., Ivanovic, M., Chung, Y. T., Laskin, W. B., Schulze-Hoepfner, F., et al. Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). Prostate, 71(3), 268–280.

  48. Weng, W., Yin, J., Zhang, Y., Qiu, J., & Wang, X. Metastasis-associated protein 1 promotes tumor invasion by downregulation of E-cadherin. Int J Oncol, 44(3), 812–818.

  49. Kang, H. J., Lee, M. H., Kang, H. L., Kim, S. H., Ahn, J. R., Na, H., et al. Differential regulation of estrogen receptor alpha expression in breast cancer cells by metastasis-associated protein 1. Cancer Res, 74(5), 1484–1494.

  50. Dhasarathy, A., Kajita, M., & Wade, P. A. (2007). The transcription factor snail mediates epithelial to mesenchymal transitions by repression of estrogen receptor-alpha. Molecular Endocrinology, 21(12), 2907–2918.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Salot, S., & Gude, R. MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines. Eur J Cancer, 49(2), 492–499.

  52. Gururaj, A. E., Holm, C., Landberg, G., & Kumar, R. (2006). Breast cancer-amplified sequence 3, a target of metastasis-associated protein 1, contributes to tamoxifen resistance in premenopausal patients with breast cancer. Cell Cycle, 5(13), 1407–1410.

    Article  CAS  PubMed  Google Scholar 

  53. Hofer, M. D., Kuefer, R., Varambally, S., Li, H., Ma, J., Shapiro, G. I., et al. (2004). The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Research, 64(3), 825–829.

    Article  CAS  PubMed  Google Scholar 

  54. Li, K., Dias, S. J., Rimando, A. M., Dhar, S., Mizuno, C. S., Penman, A. D., et al. (2013). Pterostilbene acts through metastasis-associated protein 1 to inhibit tumor growth, progression and metastasis in prostate cancer. PLoS ONE, 8(3), e57542.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Yu, L., Su, Y. S., Zhao, J., Wang, H., & Li, W. Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells. FEBS Lett, 587(16), 2542–2551.

  56. Feng, X., Zhang, Q., Xia, S., Xia, B., Zhang, Y., Deng, X., et al. (2014). MTA1 overexpression induces cisplatin resistance in nasopharyngeal carcinoma by promoting cancer stem cells properties. Molecules and Cells. doi:10.14348/molcells.2014.0029.

    Google Scholar 

  57. Ghanta, K. S., Li, D. Q., Eswaran, J., & Kumar, R. Gene profiling of MTA1 identifies novel gene targets and functions. PLoS One, 6(2), e17135.

  58. Lehner, B., Crombie, C., Tischler, J., Fortunato, A., & Fraser, A. G. (2006). Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. Nature Genetics, 38(8), 896–903.

    Article  CAS  PubMed  Google Scholar 

  59. Wu, M., Wang, L., Li, Q., Li, J., Qin, J., & Wong, J. (2013). The MTA family proteins as novel histone H3 binding proteins. Cell Bioscience, 3(1), 1.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Toh, Y., Ohga, T., Endo, K., Adachi, E., Kusumoto, H., Haraguchi, M., et al. (2004). Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. International Journal of Cancer, 110(3), 362–367.

    Article  CAS  Google Scholar 

  61. Liu, J., Wang, H., Ma, F., Xu, D., Chang, Y., Zhang, J., et al. (2014). MTA1 regulates higher-order chromatin structure and histone H1-chromatin interaction in-vivo. Mol Oncol. doi:10.1016/j.molonc.2014.08.007.

  62. Metzger, E., Wissmann, M., Yin, N., Muller, J. M., Schneider, R., Peters, A. H., et al. (2005). LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature, 437(7057), 436–439.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize for not citing many other deserving studies from our colleagues due to space limitations. We thank fellows, research staff, and colleagues in the Kumar laboratory for their contribution to the biology of MTA1 in cancer. The MTA1 project in Kumar’s lab is supported by NIH grant CA098823.

Conflict of interest

The authors declare no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sen, N., Gui, B. & Kumar, R. Role of MTA1 in cancer progression and metastasis. Cancer Metastasis Rev 33, 879–889 (2014). https://doi.org/10.1007/s10555-014-9515-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9515-3

Keywords

Navigation