Skip to main content

Advertisement

Log in

Subcellular localization of MTA proteins in normal and cancer cells

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The subcellular localization of a protein is closely linked to and indicates its function. The metastatic tumor antigen (MTA) family has been under continuous investigation since its identification two decades ago. MTA1, MTA2, and MTA3 are the main members of the MTA family. MTA1, as the representative member of this family, has been shown to be widely expressed in both embryonic and adult tissues, as well as in normal and cancerous conditions, indicating that MTA1 has functions both in physiological and pathological contexts. MTA1 is expressed at a higher level in most cancers than in their normal tissue counterparts. Even in normal cells, MTA1 levels vary a great deal from tissue to tissue. Importantly, MTA1 shows a multiple localization pattern in the cell, as do MTA2 and MTA3. Different MTA components in different subcellular compartments may exert different molecular functions in the cell. Previous studies revealed that MTA1 and MTA2 are predominately localized to the nucleus, while MTA3 is observed in both the nucleus and cytoplasm. Recent studies have reported that MTA1 is located in the nucleus, cytoplasm, and the nuclear envelope. In the nucleus, MTA1 dynamically interacts with chromatin in a MTA1-K532 methylation-dependent manner, whereas cytoplasmic MTA1 binds to the microtubule skeleton. MTA1 also shows a dynamic distribution during the cell cycle. Further investigations are needed to identify the exact subcellular localizations of MTA proteins. We review the sub-cellular localization patterns of the MTA family members and give a comprehensive overview of their respective molecular activities in multiple contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Manavathi, B., & Kumar, R. (2007). Metastasis tumor antigens, an emerging family of multifaceted master coregulators. Journal of Biological Chemistry, 282(3), 1529–1533.

    CAS  PubMed  Google Scholar 

  2. Toh, Y., Pencil, S. D., & Nicolson, G. L. (1994). A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. Journal of Biological Chemistry, 269(37), 22958–22963.

    CAS  PubMed  Google Scholar 

  3. Toh, Y., Pencil, S. D., & Nicolson, G. L. (1995). Analysis of the complete sequence of the novel metastasis-associated candidate gene, mta1, differentially expressed in mammary adenocarcinoma and breast cancer cell lines. Gene, 159(1), 97–104.

    CAS  PubMed  Google Scholar 

  4. Toh, Y., & Nicolson, G. L. (2009). The role of the MTA family and their encoded proteins in human cancers: molecular functions and clinical implications. Clinical and Experimental Metastasis, 26(3), 215–227.

    CAS  PubMed  Google Scholar 

  5. Kleene, R., Zdzieblo, J., Wege, K., & Kern, H. F. (1999). A novel zymogen granule protein (ZG29p) and the nuclear protein MTA1p are differentially expressed by alternative transcription initiation in pancreatic acinar cells of the rat. Journal of Cell Science, 112(Pt 15), 2539–2548.

    CAS  PubMed  Google Scholar 

  6. Kumar, R., Wang, R. A., Mazumdar, A., et al. (2002). A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 418(6898), 654–657.

    CAS  PubMed  Google Scholar 

  7. Fujita, N., Jaye, D. L., Kajita, M., Geigerman, C., Moreno, C. S., & Wade, P. A. (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 113(2), 207–219.

    CAS  PubMed  Google Scholar 

  8. Manavathi, B., Singh, K., & Kumar, R. (2007). MTA family of coregulators in nuclear receptor biology and pathology. Nuclear Receptor Signaling, 5, e010.

    PubMed Central  PubMed  Google Scholar 

  9. Yao, Y. L., & Yang, W. M. (2003). The metastasis-associated proteins 1 and 2 form distinct protein complexes with histone deacetylase activity. Journal of Biological Chemistry, 278(43), 42560–42568.

    CAS  PubMed  Google Scholar 

  10. Bowen, N. J., Fujita, N., Kajita, M., & Wade, P. A. (2004). Mi-2/NuRD: multiple complexes for many purposes. Biochimica et Biophysica Acta, 1677(1–3), 52–57.

    CAS  PubMed  Google Scholar 

  11. Singh, R. R., & Kumar, R. (2007). MTA family of transcriptional metaregulators in mammary gland morphogenesis and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 12(2–3), 115–125.

    PubMed  Google Scholar 

  12. Kumar, R., Wang, R. A., & Bagheri-Yarmand, R. (2003). Emerging roles of MTA family members in human cancers. Seminars in Oncology, 30(5 Suppl 16), 30–37.

    CAS  PubMed  Google Scholar 

  13. Simpson, A., Uitto, J., Rodeck, U., & Mahoney, M. G. (2001). Differential expression and subcellular distribution of the mouse metastasis-associated proteins Mta1 and Mta3. Gene, 273(1), 29–39.

    CAS  PubMed  Google Scholar 

  14. Mazumdar, A., Wang, R. A., Mishra, S. K., et al. (2001). Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nature Cell Biology, 3(1), 30–37.

    CAS  PubMed  Google Scholar 

  15. Moon, W. S., Chang, K., & Tarnawski, A. S. (2004). Overexpression of metastatic tumor antigen 1 in hepatocellular carcinoma: relationship to vascular invasion and estrogen receptor-alpha. Human Pathology, 35(4), 424–429.

    CAS  PubMed  Google Scholar 

  16. Park, H. R., Jung, W. W., Kim, H. S., Bacchini, P., Bertoni, F., & Park, Y. K. (2005). Overexpression of metastatic tumor antigen in osteosarcoma: comparison between conventional high-grade and central low-grade osteosarcoma. Cancer Research and Treatment, 37(6), 360–364.

    PubMed Central  PubMed  Google Scholar 

  17. Balasenthil, S., Broaddus, R. R., & Kumar, R. (2006). Expression of metastasis-associated protein 1 (MTA1) in benign endometrium and endometrial adenocarcinomas. Human Pathology, 37(6), 656–661.

    CAS  PubMed  Google Scholar 

  18. Aramaki, Y., Ogawa, K., Toh, Y., et al. (2005). Direct interaction between metastasis-associated protein 1 and endophilin 3. FEBS Letters, 579(17), 3731–3736.

    CAS  PubMed  Google Scholar 

  19. Liu J, Xu D, Wang H, et al. (2014). The subcellular distribution and function of MTA1 in cancer differentiation. Oncotarget, 5(13):5153–64.

  20. Li, W., Ma, L., Zhao, J., Liu, X., Li, Z., & Zhang, Y. (2009). Expression profile of MTA1 in adult mouse tissues. Tissue and Cell, 41(6), 390–399.

    CAS  PubMed  Google Scholar 

  21. Li, W., Zhang, J., Liu, X., Xu, R., & Zhang, Y. (2007). Correlation of appearance of metastasis-associated protein1 (Mta1) with spermatogenesis in developing mouse testis. Cell and Tissue Research, 329(2), 351–362.

    CAS  PubMed  Google Scholar 

  22. Li, W., Liu, X. P., Xu, R. J., & Zhang, Y. Q. (2007). Immunolocalization assessment of metastasis-associated protein 1 in human and mouse mature testes and its association with spermatogenesis. Asian Journal of Andrology, 9(3), 345–352.

    CAS  PubMed  Google Scholar 

  23. Li, W., Bao, W., Ma, J., et al. (2008). Metastasis tumor antigen 1 is involved in the resistance to heat stress-induced testicular apoptosis. FEBS Letters, 582(6), 869–873.

    CAS  PubMed  Google Scholar 

  24. Li, W., Wu, Z. Q., Zhao, J., et al. (2011). Transient protection from heat-stress induced apoptotic stimulation by metastasis-associated protein 1 in pachytene spermatocytes. PLoS One, 6(10), e26013.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Li, W., Zhu, H., Bao, W., et al. (2008). Involvement of metastasis tumor antigen 1 in hepatic regeneration and proliferation. Cellular Physiology and Biochemistry, 22(1–4), 315–326.

    CAS  PubMed  Google Scholar 

  26. Zhang, Q. H., Shen, Z. H., & Yao, Y. M. (2014). Septic encephalopathy: when cytokines interact with acetylcholine in the brain. Military Medical Research. doi:10.1186/2054-9369-1-20.

    Google Scholar 

  27. Thakur, M. K., & Ghosh, S. (2009). Interaction of estrogen receptor alpha transactivation domain with MTA1 decreases in old mouse brain. Journal of Molecular Neuroscience, 37(3), 269–273.

    CAS  PubMed  Google Scholar 

  28. Wang, H., Liu, X. L., Shu, S. N., Huang, Y. J., & Fang, F. (2011). Identification of proteins that interact with murine cytomegalovirus earlyprotein M112-113 in brain. Chinese Medical Journal, 124(21), 3532–3536.

    CAS  PubMed  Google Scholar 

  29. Manavathi, B., Peng, S., Rayala, S. K., et al. (2007). Repression of Six3 by a corepressor regulates rhodopsin expression. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13128–13133.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Bagheri-Yarmand, R., Talukder, A. H., Wang, R. A., Vadlamudi, R. K., & Kumar, R. (2004). Metastasis-associated protein 1 deregulation causes inappropriate mammary gland development and tumorigenesis. Development, 131(14), 3469–3479.

    CAS  PubMed  Google Scholar 

  31. Liang, J., Wan, M., Zhang, Y., et al. (2008). Nanog and Oct4 associate with unique transcriptional repression complexes in embryonic stem cells. Nature Cell Biology, 10(6), 731–739.

    CAS  PubMed  Google Scholar 

  32. Kumar, A., Salimath, B. P., Schieker, M., Stark, G. B., & Finkenzeller, G. (2011). Inhibition of metastasis-associated gene 1 expression affects proliferation and osteogenic differentiation of immortalized human mesenchymal stem cells. Cell Proliferation, 44(2), 128–138.

    CAS  PubMed  Google Scholar 

  33. Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J., & Wang, W. (1998). NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Molecular Cell, 2(6), 851–861.

    CAS  PubMed  Google Scholar 

  34. Alqarni SS, Murthy A, Zhang W, et al. (2014). Insight into the architecture of the NuRD complex: structure of the RbAp48-MTA1 sub-complex. Journal of Biological Chemistry. doi:10.1074/jbc.M114.558940.

  35. Chou, D. M., Adamson, B., Dephoure, N. E., et al. (2010). A chromatin localization screen reveals poly (ADP ribose)-regulated recruitment of the repressive polycomb and NuRD complexes to sites of DNA damage. Proceedings of the National Academy of Sciences of the United States of America, 107(43), 18475–18480.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Li, D. Q., Ohshiro, K., Khan, M. N., & Kumar, R. (2010). Requirement of MTA1 in ATR-mediated DNA damage checkpoint function. Journal of Biological Chemistry, 285(26), 19802–19812.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Li, D. Q., Pakala, S. B., Reddy, S. D., et al. (2010). Revelation of p53-independent function of MTA1 in DNA damage response via modulation of the p21 WAF1-proliferating cell nuclear antigen pathway. Journal of Biological Chemistry, 285(13), 10044–10052.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Dehennaut V, Loison I, Dubuissez M, Nassour J, Abbadie C, Leprince D. (2013). DNA double-strand breaks lead to activation of Hypermethylated in Cancer 1 (HIC1) by SUMOylation to regulate DNA repair. Journal of Biological Chemistry, 288(15):10254–64. doi:10.1074/jbc.M112.421610.

  39. Pakala, S. B., Bui-Nguyen, T. M., Reddy, S. D., et al. (2010). Regulation of NF-kappaB circuitry by a component of the nucleosome remodeling and deacetylase complex controls inflammatory response homeostasis. Journal of Biological Chemistry, 285(31), 23590–23597.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Pakala, S. B., Reddy, S. D., Bui-Nguyen, T. M., Rangparia, S. S., Bommana, A., & Kumar, R. (2010). MTA1 coregulator regulates LPS response via MyD88-dependent signaling. Journal of Biological Chemistry, 285(43), 32787–32792.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Ghanta, K. S., Pakala, S. B., Reddy, S. D., Li, D. Q., Nair, S. S., & Kumar, R. (2011). MTA1 coregulation of transglutaminase 2 expression and function during inflammatory response. Journal of Biological Chemistry, 286(9), 7132–7138.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Jang, K. S., Paik, S. S., Chung, H., Oh, Y. H., & Kong, G. (2006). MTA1 overexpression correlates significantly with tumor grade and angiogenesis in human breast cancers. Cancer Science, 97(5), 374–379.

    CAS  PubMed  Google Scholar 

  43. Cheng CW, Liu YF, Yu JC, et al. (2012). Prognostic significance of cyclin D1, beta-catenin, and MTA1 in patients with invasive ductal carcinoma of the breast. Annals of Surgical Oncology, 19(13):4129–39. doi:10.1245/s10434-012-2541-x.

  44. Toh, Y., Oki, E., Oda, S., et al. (1997). Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. International Journal of Cancer, 74(4), 459–463.

    CAS  Google Scholar 

  45. Higashijima, J., Kurita, N., Miyatani, T., et al. (2011). Expression of histone deacetylase 1 and metastasis-associated protein 1 as prognostic factors in colon cancer. Oncology Reports. doi:10.3892/or.2011.1312.

    PubMed  Google Scholar 

  46. Du, B., Yang, Z. Y., Zhong, X. Y., et al. (2011). Metastasis-associated protein 1 induces VEGF-C and facilitates lymphangiogenesis in colorectal cancer. World Journal of Gastroenterology, 17(9), 1219–1226.

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Kidd, M., Modlin, I. M., Mane, S. M., et al. (2006). Utility of molecular genetic signatures in the delineation of gastric neoplasia. Cancer, 106(7), 1480–1488.

    CAS  PubMed  Google Scholar 

  48. Deng X, Du L, Wang C, et al. (2013). Close association of metastasis-associated protein 1 overexpression with increased angiogenesis and poor survival in patients with histologically node-negative gastric cancer. World Journal of Surgery, 37(4):792–8. doi:10.1007/s00268-012-1898-0.

  49. Toh, Y., Kuwano, H., Mori, M., Nicolson, G. L., & Sugimachi, K. (1999). Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. British Journal of Cancer, 79(11–12), 1723–1726.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Toh, Y., Ohga, T., Endo, K., et al. (2004). Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. International Journal of Cancer, 110(3), 362–367.

    CAS  Google Scholar 

  51. Li, S. H., Wang, Z., & Liu, X. Y. (2009). Metastasis-associated protein 1 (MTA1) overexpression is closely associated with shorter disease-free interval after complete resection of histologically node-negative esophageal cancer. World Journal of Surgery, 33(9), 1876–1881.

    PubMed  Google Scholar 

  52. Li, S. H., Tian, H., Yue, W. M., et al. (2012). Metastasis-associated protein 1 nuclear expression is closely associated with tumor progression and angiogenesis in patients with esophageal squamous cell cancer. World Journal of Surgery, 36(3), 623–31. doi:10.1007/s00268-011-1421-z.

    CAS  PubMed  Google Scholar 

  53. Iguchi, H., Imura, G., Toh, Y., & Ogata, Y. (2000). Expression of MTA1, a metastasis-associated gene with histone deacetylase activity in pancreatic cancer. International Journal of Oncology, 16(6), 1211–1214.

    CAS  PubMed  Google Scholar 

  54. Hofer, M. D., Chang, M. C., Hirko, K. A., Rubin, M. A., & Nose, V. (2009). Immunohistochemical and clinicopathological correlation of the metastasis-associated gene 1 (MTA1) expression in benign and malignant pancreatic endocrine tumors. Modern Pathology, 22(7), 933–939.

    CAS  PubMed  Google Scholar 

  55. Hamatsu, T., Rikimaru, T., Yamashita, Y., et al. (2003). The role of MTA1 gene expression in human hepatocellular carcinoma. Oncology Reports, 10(3), 599–604.

    CAS  PubMed  Google Scholar 

  56. Ryu, S. H., Chung, Y. H., Lee, H., et al. (2008). Metastatic tumor antigen 1 is closely associated with frequent postoperative recurrence and poor survival in patients with hepatocellular carcinoma. Hepatology, 47(3), 929–936.

    PubMed  Google Scholar 

  57. Sasaki, H., Yukiue, H., Kobayashi, Y., et al. (2001). Expression of the MTA1 mRNA in thymoma patients. Cancer Letters, 174(2), 159–163.

    CAS  PubMed  Google Scholar 

  58. Sasaki, H., Moriyama, S., Nakashima, Y., et al. (2002). Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer, 35(2), 149–154.

    PubMed  Google Scholar 

  59. Xu, L., Mao, X. Y., Fan, C. F., & Zheng, H. C. (2011). MTA1 expression correlates significantly with cigarette smoke in non-small cell lung cancer. Virchows Archiv, 459(4), 415–422.

    CAS  PubMed  Google Scholar 

  60. Park, H. R., Cabrini, R. L., Araujo, E. S., Paparella, M. L., Brandizzi, D., & Park, Y. K. (2009). Expression of ezrin and metastatic tumor antigen in osteosarcomas of the jaw. Tumori, 95(1), 81–86.

    CAS  PubMed  Google Scholar 

  61. Roepman, P., de Jager, A., Groot, K. M. J., Kummer, J. A., Slootweg, P. J., & Holstege, F. C. (2006). Maintenance of head and neck tumor gene expression profiles upon lymph node metastasis. Cancer Research, 66(23), 11110–11114.

    CAS  PubMed  Google Scholar 

  62. Kawasaki, G., Yanamoto, S., Yoshitomi, I., Yamada, S., & Mizuno, A. (2008). Overexpression of metastasis-associated MTA1 in oral squamous cell carcinomas: correlation with metastasis and invasion. International Journal of Oral and Maxillofacial Surgery, 37(11), 1039–1046.

    CAS  PubMed  Google Scholar 

  63. Dannenmann, C., Shabani, N., Friese, K., Jeschke, U., Mylonas, I., & Bruning, A. (2008). The metastasis-associated gene MTA1 is upregulated in advanced ovarian cancer, represses ERbeta, and enhances expression of oncogenic cytokine GRO. Cancer Biology and Therapy, 7(9), 1460–1467.

    CAS  PubMed  Google Scholar 

  64. He X, Zhou C, Zheng L, Xiong Z. (2013). Overexpression of MTA1 promotes invasiveness and metastasis of ovarian cancer cells. Irish Journal of Medical Science, 183(3):433–8. doi:10.1007/s11845-013-1034-7.

  65. Kai, L., Wang, J., Ivanovic, M., et al. (2011). Targeting prostate cancer angiogenesis through metastasis-associated protein 1 (MTA1). Prostate, 71(3), 268–280.

    CAS  PubMed  Google Scholar 

  66. Dias, S. J., Zhou, X., Ivanovic, M., et al. (2013). Nuclear MTA1 overexpression is associated with aggressive prostate cancer, recurrence and metastasis in African Americans. Scientific Reports, 3, 2331.

    PubMed Central  PubMed  Google Scholar 

  67. Deng, Y. F., Zhou, D. N., Ye, C. S., Zeng, L., & Yin, P. (2012). Aberrant expression levels of MTA1 and RECK in nasopharyngeal carcinoma: association with metastasis, recurrence, and prognosis. Annals of Otology, Rhinology and Laryngology, 121(7), 457–465.

    Google Scholar 

  68. Li, W. F., Liu, N., Cui, R. X., et al. (2012). Nuclear overexpression of metastasis-associated protein 1 correlates significantly with poor survival in nasopharyngeal carcinoma. Journal of Translational Medicine, 10(1), 78.

    PubMed Central  PubMed  Google Scholar 

  69. Liu, T., Yang, M., Yang, S., Ge, T., Gu, L., & Lou, G. (2013). Metastasis-associated protein 1 is a novel marker predicting survival and lymph nodes metastasis in cervical cancer. Human Pathology. doi:10.1016/j.humpath.2013.05.009.

    Google Scholar 

  70. Bruning, A., Makovitzky, J., Gingelmaier, A., Friese, K., & Mylonas, I. (2009). The metastasis-associated genes MTA1 and MTA3 are abundantly expressed in human placenta and chorionic carcinoma cells. Histochemistry and Cell Biology, 132(1), 33–38.

    PubMed  Google Scholar 

  71. Bagheri-Yarmand, R., Balasenthil, S., Gururaj, A. E., et al. (2007). Metastasis-associated protein 1 transgenic mice: a new model of spontaneous B-cell lymphomas. Cancer Research, 67(15), 7062–7067.

    CAS  PubMed  Google Scholar 

  72. Balasenthil, S., Gururaj, A. E., Talukder, A. H., et al. (2007). Identification of Pax5 as a target of MTA1 in B-cell lymphomas. Cancer Research, 67(15), 7132–7138.

    CAS  PubMed  Google Scholar 

  73. Pakala SB, Singh K, Reddy SD, et al. (2011). TGF-beta1 signaling targets metastasis-associated protein 1, a new effector in epithelial cells. Oncogene, 30(19):2230–41. doi:10.1038/onc.2010.608.

  74. Yu, L., Su, Y. S., Zhao, J., Wang, H., & Li, W. (2013). Repression of NR4A1 by a chromatin modifier promotes docetaxel resistance in PC-3 human prostate cancer cells. FEBS Letters. doi:10.1016/j.febslet.2013.06.029.

    Google Scholar 

  75. Toh, Y., Kuninaka, S., Endo, K., et al. (2000). Molecular analysis of a candidate metastasis-associated gene, MTA1: possible interaction with histone deacetylase 1. Journal of Experimental & Clinical Cancer Research, 19(1), 105–111.

    CAS  Google Scholar 

  76. Khaleque, M. A., Bharti, A., Gong, J., et al. (2008). Heat shock factor 1 represses estrogen-dependent transcription through association with MTA1. Oncogene, 27(13), 1886–1893.

    CAS  PubMed  Google Scholar 

  77. Sharma, G., Mirza, S., Parshad, R., et al. (2011). Clinical significance of Maspin promoter methylation and loss of its protein expression in invasive ductal breast carcinoma: correlation with VEGF-A and MTA1 expression. Tumour Biology, 32(1), 23–32.

    CAS  PubMed  Google Scholar 

  78. Nair, S. S., Bommana, A., Pakala, S. B., et al. (2011). Inflammatory response to liver fluke Opisthorchis viverrini in mice depends on host master coregulator MTA1, a marker for parasite-induced cholangiocarcinoma in humans. Hepatology, 54(4), 1388–1397.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Qian, H., Lu, N., Xue, L., et al. (2005). Reduced MTA1 expression by RNAi inhibits in vitro invasion and migration of esophageal squamous cell carcinoma cell line. Clinical and Experimental Metastasis, 22(8), 653–662.

  80. Jian Liu, H. W., Fei Ma, D. X., Yanan Chang, J. Z., Jia Wang, M. Z., Chen Lin, C. H., & Haili Qian, Q. Z. (2014). MTA1 regulates higher-order chromatin structure and histone H1-chromatin interaction in vivo. Molecular Oncology. doi:10.1016/j.molonc.2014.08.007.

  81. Nair, S. S., Li, D. Q., & Kumar, R. (2013). A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Molecular Cell, 49(4), 704–718.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Gerlitz, G., Hock, R., Ueda, T., & Bustin, M. (2009). The dynamics of HMG protein-chromatin interactions in living cells. Biochemistry and Cell Biology, 87(1), 127–137.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Frosst, P., Guan, T., Subauste, C., Hahn, K., & Gerace, L. (2002). Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. Journal of Cell Biology, 156(4), 617–630.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Millard, C. J., Watson, P. J., Celardo, I., et al. (2013). Class I HDACs share a common mechanism of regulation by inositol phosphates. Molecular Cell. doi:10.1016/j.molcel.2013.05.020.

    PubMed Central  PubMed  Google Scholar 

  85. Molli, P. R., Singh, R. R., Lee, S. W., & Kumar, R. (2008). MTA1-mediated transcriptional repression of BRCA1 tumor suppressor gene. Oncogene, 27(14), 1971–1980.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Talukder, A. H., Mishra, S. K., Mandal, M., et al. (2003). MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions. Journal of Biological Chemistry, 278(13), 11676–11685.

    CAS  PubMed  Google Scholar 

  87. Mishra, S. K., Mazumdar, A., Vadlamudi, R. K., et al. (2003). MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions. Journal of Biological Chemistry, 278(21), 19209–19219.

    CAS  PubMed  Google Scholar 

  88. Talukder, A. H., Gururaj, A., Mishra, S. K., Vadlamudi, R. K., & Kumar, R. (2004). Metastasis-associated protein 1 interacts with NRIF3, an estrogen-inducible nuclear receptor coregulator. Molecular and Cellular Biology, 24(15), 6581–6591.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Singh, R. R., Barnes, C. J., Talukder, A. H., Fuqua, S. A., & Kumar, R. (2005). Negative regulation of estrogen receptor alpha transactivation functions by LIM domain only 4 protein. Cancer Research, 65(22), 10594–10601.

    CAS  PubMed  Google Scholar 

  90. Van Rechem, C., Boulay, G., Pinte, S., Stankovic-Valentin, N., Guerardel, C., & Leprince, D. (2010). Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Molecular and Cellular Biology, 30(16), 4045–4059.

    PubMed Central  PubMed  Google Scholar 

  91. Fouveau, B., Boulay, G., Pinte, S., Van Rechem, C., Rood, B. R., & Leprince, D. (2011). Receptor tyrosyne kinase Epha2 is a direct target-gene of HIC1 (hypermethylated in cancer 1). Journal of Biological Chemistry, 287(8), 5366–78. doi:10.1074/jbc.M111.329466.

    Google Scholar 

  92. Kumar, R., Balasenthil, S., Manavathi, B., Rayala, S. K., & Pakala, S. B. (2010). Metastasis-associated protein 1 and its short form variant stimulates Wnt1 transcription through promoting its derepression from Six3 corepressor. Cancer Research, 70(16), 6649–6658.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Reddy, S. D., Pakala, S. B., Molli, P. R., et al. (2012). Metastasis associated protein1/histone deacetylase 4-nucleosome remodeling and deacetylase complex regulates PTEN expression and function. Journal of Biological Chemistry, 287(33), 27843–50. doi:10.1074/jbc.M112.348474.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Marzook, H., Li, D. Q., Nair, V. S., et al. (2011). Metastasis-associated protein 1 drives tumor cell migration and invasion through transcriptional repression of RING finger protein 144A. Journal of Biological Chemistry, 287(8), 5615–26. doi:10.1074/jbc.M111.314088.

    PubMed Central  PubMed  Google Scholar 

  95. Salot, S., & Gude, R. (2012). MTA1-mediated transcriptional repression of SMAD7 in breast cancer cell lines. European Journal of Cancer, 49(2), 492–9. doi:10.1016/j.ejca.2012.06.019.

    PubMed  Google Scholar 

  96. Gururaj, A. E., Singh, R. R., Rayala, S. K., et al. (2006). MTA1, a transcriptional activator of breast cancer amplified sequence 3. Proceedings of the National Academy of Sciences of the United States of America, 103(17), 6670–6675.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Li, D. Q., Pakala, S. B., Reddy, S. D., et al. (2011). Bidirectional autoregulatory mechanism of metastasis-associated protein 1-alternative reading frame pathway in oncogenesis. Proceedings of the National Academy of Sciences of the United States of America, 108(21), 8791–6. doi:10.1073/pnas.1018389108.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Kumar, D. S., Pakala, S. B., Nair, V. S., et al. (2011). Mechanism of MTA1 over expression-linked invasion: MTA1 regulation of HMMR expression and function. Journal of Biological Chemistry, 287(8), 5483–91. doi:10.1074/jbc.M111.324632.

    PubMed Central  PubMed  Google Scholar 

  99. Reddy, S. D., Rayala, S. K., Ohshiro, K., et al. (2011). Multiple coregulatory control of tyrosine hydroxylase gene transcription. Proceedings of the National Academy of Sciences of the United States of America, 108(10), 4200–4205.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Cong, L., Pakala, S. B., Ohshiro, K., Li, D. Q., & Kumar, R. (2011). SUMOylation and SUMO-interacting motif of metastasis tumor antigen 1 synergistically regulate its transcriptional repressor function. Journal of Biological Chemistry, 286(51), 43793–808. doi:10.1074/jbc.M111.267237.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Pakala, S. B., Rayala, S. K., Wang, R. A., et al. (2013). MTA1 promotes STAT3 transcription and pulmonary metastasis in breast cancer. Cancer Research, 73(12), 3761–70. doi:10.1158/0008-5472.CAN-12-3998.

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Chen, T., & Dent, S. Y. (2014). Chromatin modifiers and remodellers: regulators of cellular differentiation. Nature Reviews Genetics, 15(2), 93–106.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Yoo, Y. G., Kong, G., & Lee, M. O. (2006). Metastasis-associated protein 1 enhances stability of hypoxia-inducible factor-1alpha protein by recruiting histone deacetylase 1. EMBO Journal, 25(6), 1231–1241.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Li, D. Q., Ohshiro, K., Reddy, S. D., et al. (2009). E3 ubiquitin ligase COP1 regulates the stability and functions of MTA1. Proceedings of the National Academy of Sciences of the United States of America, 106(41), 17493–17498.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Li, D. Q., & Kumar, R. (2010). Mi-2/NuRD complex making inroads into DNA-damage response pathway. Cell Cycle, 9(11), 2071–2079.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Parker, A. L., Kavallaris, M., & McCarroll, J. A. (2014). Microtubules and their role in cellular stress in cancer. Frontiers in Oncology, 4, 153.

    PubMed Central  PubMed  Google Scholar 

  107. Wang, H., Fan, L., Wei, J., et al. (2012). Akt mediates metastasis-associated gene 1 (MTA1) regulating the expression of e-cadherin and promoting the invasiveness of prostate cancer cells. PLoS One, 7(12), e46888.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Song, Q., Li, Y., Zheng, X., et al. (2013). MTA1 contributes to actin cytoskeleton reorganization and metastasis of nasopharyngeal carcinoma by modulating Rho GTPases and hedgehog signaling. International Journal of Biochemistry and Cell Biology, 45(7), 1439–1446.

    CAS  PubMed  Google Scholar 

  109. Kumar, R., Balasenthil, S., Pakala, S. B., Rayala, S. K., Sahin, A. A., & Ohshiro, K. (2010). Metastasis-associated protein 1 short form stimulates Wnt1 pathway in mammary epithelial and cancer cells. Cancer Research, 70(16), 6598–6608.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Mishra, S. K., Yang, Z., Mazumdar, A., Talukder, A. H., Larose, L., & Kumar, R. (2004). Metastatic tumor antigen 1 short form (MTA1s) associates with casein kinase I-gamma2, an estrogen-responsive kinase. Oncogene, 23(25), 4422–4429.

    CAS  PubMed  Google Scholar 

  111. Zhang, Y., Ng, H. H., Erdjument-Bromage, H., Tempst, P., Bird, A., & Reinberg, D. (1999). Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes and Development, 13(15), 1924–1935.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Futamura, M., Nishimori, H., Shiratsuchi, T., Saji, S., Nakamura, Y., & Tokino, T. (1999). Molecular cloning, mapping, and characterization of a novel human gene, MTA1-L1, showing homology to a metastasis-associated gene, MTA1. Journal of Human Genetics, 44(1), 52–56.

    CAS  PubMed  Google Scholar 

  113. Matsusue, K., Takiguchi, S., Toh, Y., & Kono, A. (2001). Characterization of mouse metastasis-associated gene 2: genomic structure, nuclear localization signal, and alternative potentials as transcriptional activator and repressor. DNA and Cell Biology, 20(10), 603–611.

    CAS  PubMed  Google Scholar 

  114. Lee, H., Ryu, S. H., Hong, S. S., et al. (2009). Overexpression of metastasis-associated protein 2 is associated with hepatocellular carcinoma size and differentiation. Journal of Gastroenterology and Hepatology, 24(8), 1445–1450.

    PubMed  Google Scholar 

  115. Liu, S. L., Han, Y., Zhang, Y., et al. (2012). Expression of metastasis-associated protein 2 (MTA2) might predict proliferation in non-small cell lung cancer. Targeted Oncology, 7(2), 135–143.

    PubMed  Google Scholar 

  116. Wang, Y., Li, L., Li, Q., Xie, C., Wang, E., & Wang, E. (2012). Expression of P120 catenin, Kaiso, and metastasis tumor antigen-2 in thymomas. Tumour Biology, 33(6), 1871–1879.

    CAS  PubMed  Google Scholar 

  117. Liu, Y. P., Shan, B. E., Wang, X. L., & Ma, L. (2012). Correlation between MTA2 overexpression and tumour progression in esophageal squamous cell carcinoma. Experimental and Therapeutic Medicine, 3(4), 745–749.

    PubMed Central  PubMed  Google Scholar 

  118. Chen, D. W., Fan, Y. F., Li, J., & Jiang, X. X. (2013). MTA2 expression is a novel prognostic marker for pancreatic ductal adenocarcinoma. Tumour Biology, 34(3), 1553–1557.

    CAS  PubMed  Google Scholar 

  119. Zhou, C., Ji, J., Cai, Q., et al. (2013). MTA2 promotes gastric cancer cells invasion and is transcriptionally regulated by Sp1. Molecular Cancer, 12(1), 102.

    PubMed Central  PubMed  Google Scholar 

  120. Covington KR, Brusco L, Barone I, et al. (2013). Metastasis tumor-associated protein 2 enhances metastatic behavior and is associated with poor outcomes in estrogen receptor-negative breast cancer. Breast Cancer Research and Treatment.

  121. Cheng, C. Y., Chou, Y. E., Ko, C. P., et al. (2014). Metastasis tumor-associated protein-2 knockdown suppresses the proliferation and invasion of human glioma cells in vitro and in vivo. Journal of Neuro-Oncology. doi:10.1007/s11060-014-1558-3.

  122. Zhang, H., Stephens, L. C., & Kumar, R. (2006). Metastasis tumor antigen family proteins during breast cancer progression and metastasis in a reliable mouse model for human breast cancer. Clinical Cancer Research, 12(5), 1479–1486.

    CAS  PubMed  Google Scholar 

  123. Lu, X., Kovalev, G. I., Chang, H., et al. (2008). Inactivation of NuRD component Mta2 causes abnormal T cell activation and lupus-like autoimmune disease in mice. Journal of Biological Chemistry, 283(20), 13825–13833.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Luo, J., Su, F., Chen, D., Shiloh, A., & Gu, W. (2000). Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 408(6810), 377–381.

    CAS  PubMed  Google Scholar 

  125. Ma, P., Lin, S., Bartolomei, M. S., & Schultz, R. M. (2010). Metastasis tumor antigen 2 (MTA2) is involved in proper imprinted expression of H19 and Peg3 during mouse preimplantation development. Biology of Reproduction, 83(6), 1027–1035.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Smeenk, G., Wiegant, W. W., Vrolijk, H., Solari, A. P., Pastink, A., & van Attikum, H. (2010). The NuRD chromatin-remodeling complex regulates signaling and repair of DNA damage. Journal of Cell Biology, 190(5), 741–749.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Li, X., Jia, S., Wang, S., Wang, Y., & Meng, A. (2009). Mta3-NuRD complex is a master regulator for initiation of primitive hematopoiesis in vertebrate embryos. Blood, 114(27), 5464–5472.

    CAS  PubMed  Google Scholar 

  128. Kwintkiewicz, J., Padilla-Banks, E., Jefferson, W. N., Jacobs, I. M., Wade, P. A., & Williams, C. J. (2012). Metastasis-associated protein 3 (MTA3) regulates G2/M progression in proliferating mouse granulosa cells. Biology of Reproduction, 86(3), 1–8.

    PubMed  Google Scholar 

  129. Fujita, N., Kajita, M., Taysavang, P., & Wade, P. A. (2004). Hormonal regulation of metastasis-associated protein 3 transcription in breast cancer cells. Molecular Endocrinology, 18(12), 2937–2949.

    CAS  PubMed  Google Scholar 

  130. Zhang, H., Singh, R. R., Talukder, A. H., & Kumar, R. (2006). Metastatic tumor antigen 3 is a direct corepressor of the Wnt4 pathway. Genes and Development, 20(21), 2943–2948.

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Fujita, N., Jaye, D. L., Geigerman, C., et al. (2004). MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell, 119(1), 75–86.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the National “973” Project (no. 2015CB553904), the National Natural Science Foundation of China (Surface project, no. 81372158 and 81372159), and the National Natural Science Foundation of China (Youth fund project, no. 81101518).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changzhi Huang or Haili Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Wang, H., Huang, C. et al. Subcellular localization of MTA proteins in normal and cancer cells. Cancer Metastasis Rev 33, 843–856 (2014). https://doi.org/10.1007/s10555-014-9511-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-014-9511-7

Keywords

Navigation