Skip to main content

Advertisement

Log in

The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3′-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Ward, E., et al. (2009). Cancer statistics, 2009. CA: A Cancer Journal for Clinicians, 59, 225–249.

    Article  Google Scholar 

  2. Woll, P. S., Morris, J. K., Painschab, M. S., et al. (2008). Wnt signaling promotes hematoendothelial cell development from human embryonic stem cells. Blood, 111, 122–131.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi-Yanaga, F., & Kahn, M. (2010). Targeting Wnt signaling: can we safely eradicate cancer stem cells? Clinical Cancer Research, 16, 3153–3162.

    Article  CAS  PubMed  Google Scholar 

  4. Merchant, A., Joseph, G., Wang, Q., et al. (2010). Gli1 regulates the proliferation and differentiation of HSCs and myeloid progenitors. Blood, 115, 2391–2396.

    Article  CAS  PubMed  Google Scholar 

  5. Varnat, F., Duquet, A., Malerba, M., et al. (2009). Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Molecular Medicine, 1, 338–351.

    Article  CAS  PubMed  Google Scholar 

  6. Syn, W. K., Jung, Y., Omenetti, A., et al. (2009). Hedgehog-mediated epithelial-to-mesenchymal transition and fibrogenic repair in nonalcoholic fatty liver disease. Gastroenterology, 137, 1478–1488.

    Article  CAS  PubMed  Google Scholar 

  7. Malizia, A. P., Lacey, N., Walls, D., et al. (2009). CUX1/Wnt signaling regulates epithelial mesenchymal transition in EBV infected epithelial cells. Experimental Cell Research, 315, 1819–1831.

    Article  CAS  PubMed  Google Scholar 

  8. American Cancer Society. (2009). Cancer facts & figures 2009. Atlanta: American Cancer Society Inc.

    Google Scholar 

  9. Surh, Y. J. (2003). Cancer chemoprevention with dietary phytochemicals. Nature Reviews. Cancer, 3, 768–780.

    Article  CAS  PubMed  Google Scholar 

  10. Khan, N., Afaq, F., & Mukhtar, H. (2007). Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis, 28, 233–239.

    Article  CAS  PubMed  Google Scholar 

  11. Lamartiniere, C. A., Cotroneo, M. S., Fritz, W. A., et al. (2002). Genistein chemoprevention: timing and mechanisms of action in murine mammary and prostate. The Journal of Nutrition, 132, 552S–558S.

    PubMed  Google Scholar 

  12. Li, Y., & Sarkar, F. H. (2002). Gene expression profiles of genistein-treated PC3 prostate cancer cells. The Journal of Nutrition, 132, 3623–3631.

    CAS  PubMed  Google Scholar 

  13. Li, Y., Li, X., & Sarkar, F. H. (2003). Gene expression profiles of I3C-and DIM-treated PC3 human prostate cancer cells determined by cDNA microarray analysis. The Journal of Nutrition, 133, 1011–1019.

    CAS  PubMed  Google Scholar 

  14. Mukhopadhyay, A., Bueso-Ramos, C., Chatterjee, D., et al. (2001). Curcumin downregulates cell survival mechanisms in human prostate cancer cell lines. Oncogene, 20, 7597–7609.

    Article  CAS  PubMed  Google Scholar 

  15. Gupta, S., Hussain, T., & Mukhtar, H. (2003). Molecular pathway for (−)-epigallocatechin-3-gallate-induced cell cycle arrest and apoptosis of human prostate carcinoma cells. Archives of Biochemistry and Biophysics, 410, 177–185.

    Article  CAS  PubMed  Google Scholar 

  16. Angers, S., & Moon, R. T. (2009). Proximal events in Wnt signal transduction. Nature Reviews Molecular Cell Biology, 10, 468–477.

    CAS  PubMed  Google Scholar 

  17. Behrens, J. (2000). Control of beta-catenin signaling in tumor development. Annals of the New York Academy of Sciences, 910, 21–33.

    Article  CAS  PubMed  Google Scholar 

  18. Peifer, M., & Polakis, P. (2000). Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science, 287, 1606–1609.

    Article  CAS  PubMed  Google Scholar 

  19. Taipale, J., & Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411, 349–354.

    Article  CAS  PubMed  Google Scholar 

  20. Verras, M., & Sun, Z. (2006). Roles and regulation of Wnt signaling and beta-catenin in prostate cancer. Cancer Letters, 237, 22–32.

    Article  CAS  PubMed  Google Scholar 

  21. Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434, 843–850.

    Article  CAS  PubMed  Google Scholar 

  22. Clevers, H. (2004). Wnt breakers in colon cancer. Cancer Cell, 5, 5–6.

    Article  CAS  PubMed  Google Scholar 

  23. Vermeulen, L., De Sousa, E. M. F., van der Heijden, M., et al. (2010). Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nature Cell Biology, 12, 468–476.

    Article  CAS  PubMed  Google Scholar 

  24. Cronauer, M. V., Schulz, W. A., Ackermann, R., et al. (2005). Effects of WNT/beta-catenin pathway activation on signaling through T-cell factor and androgen receptor in prostate cancer cell lines. International Journal of Oncology, 26, 1033–1040.

    CAS  PubMed  Google Scholar 

  25. Chesire, D. R., Ewing, C. M., Gage, W. R., et al. (2002). In vitro evidence for complex modes of nuclear beta-catenin signaling during prostate growth and tumorigenesis. Oncogene, 21, 2679–2694.

    Article  CAS  PubMed  Google Scholar 

  26. Barker, N., & Clevers, H. (2006). Mining the Wnt pathway for cancer therapeutics. Nature Reviews Drug Discovery, 5, 997–1014.

    Article  CAS  PubMed  Google Scholar 

  27. Dihlmann, S., & von Knebel, D. M. (2005). Wnt/beta-catenin-pathway as a molecular target for future anti-cancer therapeutics. International Journal of Cancer, 113, 515–524.

    Article  CAS  Google Scholar 

  28. Gritli-Linde, A., Bei, M., Maas, R., et al. (2002). Shh signaling within the dental epithelium is necessary for cell proliferation, growth and polarization. Development, 129, 5323–5337.

    Article  CAS  PubMed  Google Scholar 

  29. Yang, L., Xie, G., Fan, Q., et al. (2010). Activation of the hedgehog-signaling pathway in human cancer and the clinical implications. Oncogene, 29, 469–481.

    Article  PubMed  CAS  Google Scholar 

  30. Varjosalo, M., & Taipale, J. (2008). Hedgehog: functions and mechanisms. Genes & Development, 22, 2454–2472.

    Article  CAS  Google Scholar 

  31. Medina, V., Calvo, M. B., Diaz-Prado, S., et al. (2009). Hedgehog signalling as a target in cancer stem cells. Clinical & Translational Oncology, 11, 199–207.

    Article  CAS  Google Scholar 

  32. Vezina, C. M., & Bushman, A. W. (2007). Hedgehog signaling in prostate growth and benign prostate hyperplasia. Current Urology Reports, 8, 275–280.

    Article  PubMed  Google Scholar 

  33. Anton Aparicio, L. M., Garcia, C. R., Cassinello, E. J., et al. (2007). Prostate cancer and Hedgehog signalling pathway. Clinical & Translational Oncology, 9, 420–428.

    Article  CAS  Google Scholar 

  34. Choi, S. S., Omenetti, A., Witek, R. P., et al. (2009). Hedgehog pathway activation and epithelial-to-mesenchymal transitions during myofibroblastic transformation of rat hepatic cells in culture and cirrhosis. American Journal of Physiology. Gastrointestinal and Liver Physiology, 297, G1093–G1106.

    Article  CAS  PubMed  Google Scholar 

  35. Isohata, N., Aoyagi, K., Mabuchi, T., et al. (2009). Hedgehog and epithelial-mesenchymal transition signaling in normal and malignant epithelial cells of the esophagus. International Journal of Cancer, 125, 1212–1221.

    Article  CAS  Google Scholar 

  36. Ohta, H., Aoyagi, K., Fukaya, M., et al. (2009). Cross talk between hedgehog and epithelial-mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers. British Journal of Cancer, 100, 389–398.

    Article  CAS  PubMed  Google Scholar 

  37. Omenetti, A., Porrello, A., Jung, Y., et al. (2008). Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. The Journal of Clinical Investigation, 118, 3331–3342.

    CAS  PubMed  Google Scholar 

  38. Kalderon, D. (2002). Similarities between the Hedgehog and Wnt signaling pathways. Trends in Cell Biology, 12, 523–531.

    Article  CAS  PubMed  Google Scholar 

  39. Huelsken, J., & Birchmeier, W. (2001). New aspects of Wnt signaling pathways in higher vertebrates. Current Opinion in Genetics & Development, 11, 547–553.

    Article  CAS  Google Scholar 

  40. Ingham, P. W., & McMahon, A. P. (2001). Hedgehog signaling in animal development: paradigms and principles. Genes & Development, 15, 3059–3087.

    Article  CAS  Google Scholar 

  41. Price, M. A., & Kalderon, D. (2002). Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell, 108, 823–835.

    Article  CAS  PubMed  Google Scholar 

  42. Day, T. F., & Yang, Y. (2008). Wnt and hedgehog signaling pathways in bone development. The Journal of Bone and Joint Surgery. American Volume, 90(Suppl 1), 19–24.

    Article  PubMed  Google Scholar 

  43. Cohen, M. M., Jr. (2003). The hedgehog signaling network. American Journal of Medical Genetics. Part A, 123A, 5–28.

    Article  PubMed  Google Scholar 

  44. Yang, S. H., Andl, T., Grachtchouk, V., et al. (2008). Pathological responses to oncogenic Hedgehog signaling in skin are dependent on canonical Wnt/beta3-catenin signaling. Nature Genetics, 40, 1130–1135.

    Article  CAS  PubMed  Google Scholar 

  45. Adlercreutz, H., Honjo, H., Higashi, A., et al. (1991). Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. The American Journal of Clinical Nutrition, 54, 1093–1100.

    CAS  PubMed  Google Scholar 

  46. Adlercreutz, H., Markkanen, H., & Watanabe, S. (1993). Plasma concentrations of phyto-oestrogens in Japanese men. Lancet, 342, 1209–1210.

    Article  CAS  PubMed  Google Scholar 

  47. Hebert, J. R., Hurley, T. G., Olendzki, B. C., et al. (1998). Nutritional and socioeconomic factors in relation to prostate cancer mortality: a cross-national study. Journal of the National Cancer Institute, 90, 1637–1647.

    Article  CAS  PubMed  Google Scholar 

  48. Jacobsen, B. K., Knutsen, S. F., & Fraser, G. E. (1998). Does high soy milk intake reduce prostate cancer incidence? The Adventist Health Study (United States). Cancer Causes & Control, 9, 553–557.

    Article  CAS  Google Scholar 

  49. Sarkar, F. H., Li, Y., Wang, Z., et al. (2010). Lesson learned from nature for the development of novel anti-cancer agents: implication of isoflavone, curcumin, and their synthetic analogs. Current Pharmaceutical Design, 16(16), 1801–1812.

    Article  CAS  PubMed  Google Scholar 

  50. Li, Y., Wang, Z., Kong, D., et al. (2008). Regulation of Akt/FOXO3a/GSK-3beta/AR signaling network by isoflavone in prostate cancer cells. The Journal of Biological Chemistry, 283, 27707–27716.

    Article  CAS  PubMed  Google Scholar 

  51. Su, Y., & Simmen, R. C. (2009). Soy isoflavone genistein upregulates epithelial adhesion molecule E-cadherin expression and attenuates beta-catenin signaling in mammary epithelial cells. Carcinogenesis, 30, 331–339.

    Article  PubMed  CAS  Google Scholar 

  52. Su, Y., Simmen, F. A., Xiao, R., et al. (2007). Expression profiling of rat mammary epithelial cells reveals candidate signaling pathways in dietary protection from mammary tumors. Physiological Genomics, 30, 8–16.

    Article  CAS  PubMed  Google Scholar 

  53. Wagner, J., & Lehmann, L. (2006). Estrogens modulate the gene expression of Wnt-7a in cultured endometrial adenocarcinoma cells. Molecular Nutrition & Food Research, 50, 368–372.

    Article  CAS  Google Scholar 

  54. Kuang, H. B., Miao, C. L., Guo, W. X., et al. (2009). Dickkopf-1 enhances migration of HEK293 cell by beta-catenin/E-cadherin degradation. Frontiers in Bioscience, 14, 2212–2220.

    Article  CAS  PubMed  Google Scholar 

  55. Slusarz, A., Shenouda, N. S., Sakla, M. S., et al. (2010). Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Research, 70, 3382–3390.

    Article  CAS  PubMed  Google Scholar 

  56. Miquel, J., Bernd, A., Sempere, J. M., et al. (2002). The curcuma antioxidants: pharmacological effects and prospects for future clinical use. A review. Archives of Gerontology and Geriatrics, 34, 37–46.

    Article  CAS  PubMed  Google Scholar 

  57. Banerjee, M., Tripathi, L. M., Srivastava, V. M., et al. (2003). Modulation of inflammatory mediators by ibuprofen and curcumin treatment during chronic inflammation in rat. Immunopharmacology and Immunotoxicology, 25, 213–224.

    Article  CAS  PubMed  Google Scholar 

  58. Ryu, M. J., Cho, M., Song, J. Y., et al. (2008). Natural derivatives of curcumin attenuate the Wnt/beta-catenin pathway through down-regulation of the transcriptional coactivator p300. Biochemical and Biophysical Research Communications, 377, 1304–1308.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, Z., Desmoulin, S., Banerjee, S., et al. (2008). Synergistic effects of multiple natural products in pancreatic cancer cells. Life Sciences, 83, 293–300.

    Article  CAS  PubMed  Google Scholar 

  60. Kakarala, M., Brenner, D. E., Korkaya, H., et al. (2009). Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Research and Treatment, 122, 777–785.

    Article  PubMed  CAS  Google Scholar 

  61. Prasad, C. P., Rath, G., Mathur, S., et al. (2009). Potent growth suppressive activity of curcumin in human breast cancer cells: Modulation of Wnt/beta-catenin signaling 14. Chem-Biol Interact, 181, 263–271.

    Article  CAS  PubMed  Google Scholar 

  62. Jaiswal, A. S., Marlow, B. P., Gupta, N., et al. (2002). Beta-catenin-mediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells. Oncogene, 21, 8414–8427.

    Article  CAS  PubMed  Google Scholar 

  63. Leow, P. C., Tian, Q., Ong, Z. Y., et al. (2009). Antitumor activity of natural compounds, curcumin and PKF118-310, as Wnt/beta-catenin antagonists against human osteosarcoma cells 9. Investigational New Drugs. doi:10.1007/s10637-009-9311-z.

  64. Shin, H. W., Park, S. Y., Lee, K. B., et al. (2009). Down-regulation of Wnt signaling during apoptosis of human hepatic stellate cells 16. Hepatogastroenterology, 56, 208–212.

    CAS  PubMed  Google Scholar 

  65. Aggarwal, B. B. (2010). Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals 2. Annual Review of Nutrition, 30, 173–199.

    Article  PubMed  Google Scholar 

  66. Ahn, J., Lee, H., Kim, S., et al. (2010). Curcumin-induced suppression of adipogenic differentiation is accompanied by activation of Wnt/beta-catenin signaling 3. American Journal of Physiology. Cell Physiology, 298, C1510–C1516.

    Article  CAS  PubMed  Google Scholar 

  67. Elamin, M. H., Shinwari, Z., Hendrayani, S. F., et al. (2010). Curcumin inhibits the Sonic Hedgehog signaling pathway and triggers apoptosis in medulloblastoma cells. Molecular Carcinogenesis, 49, 302–314.

    CAS  PubMed  Google Scholar 

  68. Padhye, S., Chavan, D., Pandey, S., et al. (2010). Perspectives on chemopreventive and therapeutic potential of curcumin analogs in medicinal chemistry. Mini Reviews in Medicinal Chemistry, 10, 372–387.

    Article  CAS  PubMed  Google Scholar 

  69. Jian, L., Lee, A. H., & Binns, C. W. (2007). Tea and lycopene protect against prostate cancer. Asia Pacific Journal of Clinical Nutrition, 16(Suppl 1), 453–457.

    CAS  PubMed  Google Scholar 

  70. Kurahashi, N., Sasazuki, S., Iwasaki, M., et al. (2008). Green tea consumption and prostate cancer risk in Japanese men: a prospective study. American Journal of Epidemiology, 167, 71–77.

    Article  PubMed  Google Scholar 

  71. Khan, N., Adhami, V. M., & Mukhtar, H. (2009). Review: green tea polyphenols in chemoprevention of prostate cancer: preclinical and clinical studies. Nutrition and Cancer, 61, 836–841.

    Article  CAS  PubMed  Google Scholar 

  72. Dashwood, W. M., Orner, G. A., & Dashwood, R. H. (2002). Inhibition of beta-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): minor contribution of H(2)O(2) at physiologically relevant EGCG concentrations. Biochemical and Biophysical Research Communications, 296, 584–588.

    Article  CAS  PubMed  Google Scholar 

  73. Gao, Z., Xu, Z., Hung, M. S., et al. (2009). Promoter demethylation of WIF-1 by epigallocatechin-3-gallate in lung cancer cells 15. Anticancer Research, 29, 2025–2030.

    CAS  PubMed  Google Scholar 

  74. Pahlke, G., Ngiewih, Y., Kern, M., et al. (2006). Impact of quercetin and EGCG on key elements of the Wnt pathway in human colon carcinoma cells. Journal of Agricultural and Food Chemistry, 54, 7075–7082.

    Article  CAS  PubMed  Google Scholar 

  75. Mount, J. G., Muzylak, M., Allen, S., et al. (2006). Evidence that the canonical Wnt signalling pathway regulates deer antler regeneration. Developmental Dynamics, 235, 1390–1399.

    Article  CAS  PubMed  Google Scholar 

  76. Bose, M., Hao, X., Ju, J., et al. (2007). Inhibition of tumorigenesis in ApcMin/+ mice by a combination of (−)-epigallocatechin-3-gallate and fish oil. Journal of Agricultural and Food Chemistry, 55, 7695–7700.

    Article  CAS  PubMed  Google Scholar 

  77. Liu, L., Lai, C. Q., Nie, L., et al. (2008). The modulation of endothelial cell gene expression by green tea polyphenol-EGCG. Molecular Nutrition & Food Research, 52, 1182–1192.

    Article  CAS  Google Scholar 

  78. Kim, J., Zhang, X., Rieger-Christ, K. M., et al. (2006). Suppression of Wnt signaling by the green tea compound (−)-epigallocatechin 3-gallate (EGCG) in invasive breast cancer cells. Requirement of the transcriptional repressor HBP1. The Journal of Biological Chemistry, 281, 10865–10875.

    Article  CAS  PubMed  Google Scholar 

  79. Tang, G. Q., Yan, T. Q., Guo, W., et al. (2010). (−)-Epigallocatechin-3-gallate induces apoptosis and suppresses proliferation by inhibiting the human Indian Hedgehog pathway in human chondrosarcoma cells. Journal of Cancer Research and Clinical Oncology, 136, 1179–1185.

    Article  CAS  PubMed  Google Scholar 

  80. Vanamala, J., Reddivari, L., Radhakrishnan, S., et al. (2010). Resveratrol suppresses IGF-1 induced human colon cancer cell proliferation and elevates apoptosis via suppression of IGF-1R/Wnt and activation of p53 signaling pathways 1. BMC Cancer, 10, 238.

    Article  PubMed  CAS  Google Scholar 

  81. Hope, C., Planutis, K., Planutiene, M., et al. (2008). Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Molecular Nutrition & Food Research, 52(Suppl 1), S52–S61.

    Google Scholar 

  82. Roccaro, A. M., Leleu, X., Sacco, A., et al. (2008). Resveratrol exerts antiproliferative activity and induces apoptosis in Waldenstrom's macroglobulinemia. Clinical Cancer Research, 14, 1849–1858.

    Article  CAS  PubMed  Google Scholar 

  83. Cho, S. W., Her, S. J., Sun, H. J., et al. (2008). Differential effects of secreted frizzled-related proteins (sFRPs) on osteoblastic differentiation of mouse mesenchymal cells and apoptosis of osteoblasts. Biochemical and Biophysical Research Communications, 367, 399–405.

    Article  CAS  PubMed  Google Scholar 

  84. Cho, S. W., Yang, J. Y., Sun, H. J., et al. (2009). Wnt inhibitory factor (WIF)-1 inhibits osteoblastic differentiation in mouse embryonic mesenchymal cells. Bone, 44, 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  85. Zhou, H., Shang, L., Li, X., et al. (2009). Resveratrol augments the canonical Wnt signaling pathway in promoting osteoblastic differentiation of multipotent mesenchymal cells 12. Experimental Cell Research, 315, 2953–2962.

    Article  CAS  PubMed  Google Scholar 

  86. Higdon, J. V., Delage, B., Williams, D. E., et al. (2007). Cruciferous vegetables and human cancer risk: epidemiologic evidence and mechanistic basis. Pharmacological Research, 55, 224–236.

    Article  CAS  PubMed  Google Scholar 

  87. Nho, C. W., & Jeffery, E. (2004). Crambene, a bioactive nitrile derived from glucosinolate hydrolysis, acts via the antioxidant response element to upregulate quinone reductase alone or synergistically with indole-3-carbinol. Toxicology and Applied Pharmacology, 198, 40–48.

    Article  CAS  PubMed  Google Scholar 

  88. Benabadji, S. H., Wen, R., Zheng, J. B., et al. (2004). Anticarcinogenic and antioxidant activity of diindolylmethane derivatives. Acta Pharmacologica Sinica, 25, 666–671.

    CAS  PubMed  Google Scholar 

  89. Fares, F., Azzam, N., Appel, B., et al. (2010). The potential efficacy of 3, 3'-diindolylmethane in prevention of prostate cancer development. European Journal of Cancer Prevention, 19, 199–203.

    Article  CAS  PubMed  Google Scholar 

  90. Li, Y., Wang, Z., Kong, D., et al. (2007). Regulation of FOXO3a/beta-catenin/GSK-3beta signaling by 3, 3'-diindolylmethane contributes to inhibition of cell proliferation and induction of apoptosis in prostate cancer cells. The Journal of Biological Chemistry, 282, 21542–21550.

    Article  CAS  PubMed  Google Scholar 

  91. Li, Y., Zhang, T., Korkaya, H., et al. (2010). Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clinical Cancer Research, 16, 2580–2590.

    Article  CAS  PubMed  Google Scholar 

  92. Giovannucci, E., Rimm, E. B., Liu, Y., et al. (2002). A prospective study of tomato products, lycopene, and prostate cancer risk. Journal of the National Cancer Institute, 94, 391–398.

    CAS  PubMed  Google Scholar 

  93. Lu, Q. Y., Hung, J. C., Heber, D., et al. (2001). Inverse associations between plasma lycopene and other carotenoids and prostate cancer. Cancer Epidemiology, Biomarkers & Prevention, 10, 749–756.

    CAS  Google Scholar 

  94. Gann, P. H., Ma, J., Giovannucci, E., et al. (1999). Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Research, 59, 1225–1230.

    CAS  PubMed  Google Scholar 

  95. Limpens, J., van Weerden, W. M., Kramer, K., et al. (2004). Re: Prostate carcinogenesis in N-methyl-N-nitrosourea (NMU)-testosterone-treated rats fed tomato powder, lycopene, or energy-restricted diets. Journal of the National Cancer Institute, 96, 554–555.

    PubMed  Google Scholar 

  96. Kucuk, O., Sarkar, F. H., Sakr, W., et al. (2001). Phase II randomized clinical trial of lycopene supplementation before radical prostatectomy. Cancer Epidemiology, Biomarkers & Prevention, 10, 861–868.

    CAS  Google Scholar 

  97. Kucuk, O., Sarkar, F. H., Djuric, Z., et al. (2002). Effects of lycopene supplementation in patients with localized prostate cancer. Experimental Biology Medicine (Maywood), 227, 881–885.

    CAS  Google Scholar 

  98. Wertz, K. (2009). Lycopene effects contributing to prostate health 4. Nutrition and Cancer, 61, 775–783.

    Article  CAS  PubMed  Google Scholar 

  99. Garland, C. F., Garland, F. C., Gorham, E. D., et al. (2006). The role of vitamin D in cancer prevention. American Journal of Public Health, 96, 252–261.

    Article  PubMed  Google Scholar 

  100. Ahn, J., Albanes, D., Peters, U., et al. (2007). Dairy products, calcium intake, and risk of prostate cancer in the prostate, lung, colorectal, and ovarian cancer screening trial. Cancer Epidemiology, Biomarkers & Prevention, 16, 2623–2630.

    Article  CAS  Google Scholar 

  101. Pike, J. W., Meyer, M. B., Martowicz, M. L., et al. (2010). Emerging regulatory paradigms for control of gene expression by 1, 25-dihydroxyvitamin D(3). Journal of Steroid Biochemistry and Molecular Biology, 121(1–2), 130–135.

    Article  CAS  PubMed  Google Scholar 

  102. Kovalenko, P. L., Zhang, Z., Cui, M., et al. (2010). 1, 25 dihydroxyvitamin D-mediated orchestration of anticancer, transcript-level effects in the immortalized, non-transformed prostate epithelial cell line, RWPE1. BMC Genomics, 11, 26.

    Article  PubMed  CAS  Google Scholar 

  103. Egan, J. B., Thompson, P. A., Vitanov, M. V., et al. (2010). Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells. Molecular Carcinogenesis, 49, 337–352.

    CAS  PubMed  Google Scholar 

  104. Kaler, P., Augenlicht, L., & Klampfer, L. (2009). Macrophage-derived IL-1beta stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3. Oncogene, 28, 3892–3902.

    Article  CAS  PubMed  Google Scholar 

  105. Aguilera, O., Pena, C., Garcia, J. M., et al. (2007). The Wnt antagonist DICKKOPF-1 gene is induced by 1alpha, 25-dihydroxyvitamin D3 associated to the differentiation of human colon cancer cells. Carcinogenesis, 28, 1877–1884.

    Article  CAS  PubMed  Google Scholar 

  106. Larriba, M. J., Valle, N., Palmer, H. G., et al. (2007). The inhibition of Wnt/beta-catenin signalling by 1alpha, 25-dihydroxyvitamin D3 is abrogated by Snail1 in human colon cancer cells. Endocrine-Related Cancer, 14, 141–151.

    Article  CAS  PubMed  Google Scholar 

  107. Bijlsma, M. F., Peppelenbosch, M. P., & Spek, C. A. (2008). (Pro-)vitamin D as treatment option for hedgehog-related malignancies. Medical Hypotheses, 70, 202–203.

    Article  CAS  PubMed  Google Scholar 

  108. Tang, J. Y., So, P. L., & Epstein, E. H., Jr. (2007). Novel Hedgehog pathway targets against basal cell carcinoma. Toxicology and Applied Pharmacology, 224, 257–264.

    Article  CAS  PubMed  Google Scholar 

  109. Bruggemann, L. W., Queiroz, K. C., Zamani, K., et al. (2010). Assessing the efficacy of the hedgehog pathway inhibitor vitamin D3 in a murine xenograft model for pancreatic cancer. Cancer Biology and Therapy, 10, 78–88.

    Google Scholar 

  110. Gianduzzo, T. R., Holmes, E. G., Tinggi, U., et al. (2003). Prostatic and peripheral blood selenium levels after oral supplementation. Journal d'Urologie, 170, 870–873.

    Article  CAS  Google Scholar 

  111. Kipp, A., Banning, A., van Schothorst, E. M., et al. (2009). Four selenoproteins, protein biosynthesis, and Wnt signalling are particularly sensitive to limited selenium intake in mouse colon. Molecular Nutrition & Food Research, 53, 1561–1572.

    Article  CAS  Google Scholar 

  112. Suh, Y., Afaq, F., Johnson, J. J., et al. (2009). A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-kappaB-signaling pathways. Carcinogenesis, 30, 300–307.

    Article  CAS  PubMed  Google Scholar 

  113. Bi, X., Zhao, Y., Fang, W., et al. (2009). Anticancer activity of Panax notoginseng extract 20(S)-25-OCH3-PPD: Targetting beta-catenin signalling. Clinical and Experimental Pharmacology & Physiology, 36, 1074–1078.

    Article  CAS  Google Scholar 

  114. Murillo, G., Peng, X., Torres, K. E., et al. (2009). Deguelin inhibits growth of breast cancer cells by modulating the expression of key members of the Wnt signaling pathway 7. Cancer Prevention Research (Phila Pa), 2, 942–950.

    CAS  Google Scholar 

  115. Vanamala, J., Glagolenko, A., Yang, P., et al. (2008). Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of PPARdelta/PGE2 and elevation of PGE3. Carcinogenesis, 29, 790–796.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors’ work cited in this review article was funded by grants from the National Cancer Institute, NIH (5R01CA083695, 2R01CA108535, 5R01CA131151, 3R01CA131151-02S109, and 1R01CA132794 awarded to FHS), and a sub-contract award to FHS from the University of Texas MD Anderson Cancer Center through SPORE grant (5P20-CA101936, 3P20CA101936-05S109) on pancreatic cancer awarded to James Abbruzzese. We also thank Puschelberg and Guido foundations for their generous contribution to support our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazlul H. Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarkar, F.H., Li, Y., Wang, Z. et al. The role of nutraceuticals in the regulation of Wnt and Hedgehog signaling in cancer. Cancer Metastasis Rev 29, 383–394 (2010). https://doi.org/10.1007/s10555-010-9233-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9233-4

Keywords

Navigation