Skip to main content

Advertisement

Log in

The Met tyrosine kinase receptor in development and cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Met is a tyrosine kinase receptor, encoded by an oncogene, whose crucial role has been elucidated during the last two decades. The complex biological program triggered by Met has been dissected and its biological relevance in both physiology and pathology has been proven. Met supports a morphogenetic program, known as invasive growth, taking place both during embryogenesis and adulthood. In tumors Met is often aberrantly activated, giving rise to the pathological counterpart of the invasive growth program: cancer progression towards metastasis. Several approaches have been recently developed to interfere with the tumorigenic and metastatic processes triggered by Met.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cooper, C. S., Park, M., Blair, D. G., Tainsky, M. A., Huebner, K., Croce, C. M., et al. (1984). Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature, 311, 29–33.

    Article  PubMed  CAS  Google Scholar 

  2. Park, M., Testa, J. R., Blair, D. G., Parsa, N. Z., & Vande Woude, G. F. (1988). Two rearranged MET alleles in MNNG-HOS cells reveal the orientation of MET on chromosome 7 to other markers tightly linked to the cystic fibrosis locus. Proceedings of the National Academy of Sciences of the United States of America, 85, 2667–2671.

    Article  PubMed  CAS  Google Scholar 

  3. Park, M., Dean, M., Cooper, C. S., Schmidt, M., O’Brien, S. J., Blair, D. G., et al. (1986). Mechanism of met oncogene activation. Cell, 45, 895–904.

    Article  PubMed  CAS  Google Scholar 

  4. Soman, N. R., Wogan, G. N., & Rhim, J. S. (1990). TPR-MET oncogenic rearrangement: Detection by polymerase chain reaction amplification of the transcript and expression in human tumor cell lines. Proceedings of the National Academy of Sciences of the United States of America, 87, 738–742.

    Article  PubMed  CAS  Google Scholar 

  5. Giordano, S., Ponzetto, C., Di Renzo, M. F., Cooper, C. S., & Comoglio, P. M. (1989). Tyrosine kinase receptor indistinguishable from the c-met protein. Nature, 339, 155–156.

    Article  PubMed  CAS  Google Scholar 

  6. Stoker, M., Gherardi, E., Perryman, M., & Gray, J. (1987). Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature, 327, 239–242.

    Article  PubMed  CAS  Google Scholar 

  7. Nakamura, T., Nishizawa, T., Hagiya, M., Seki, T., Shimonishi, M., Sugimura, A., et al. (1989). Molecular cloning and expression of human hepatocyte growth factor. Nature, 342, 440–443.

    Article  PubMed  CAS  Google Scholar 

  8. Zarnegar, R., & Michalopoulos, G. (1989). Purification and biological characterization of human hepatopoietin A, a polypeptide growth factor for hepatocytes. Cancer Research, 49, 3314–3320.

    PubMed  CAS  Google Scholar 

  9. Gherardi, E., & Stoker, M. (1990). Hepatocytes and scatter factor. Nature, 346, 228.

    Article  PubMed  CAS  Google Scholar 

  10. Weidner, K. M., Arakaki, N., Hartmann, G., Vandekerckhove, J., Weingart, S., Rieder, H., et al. (1991). Evidence for the identity of human scatter factor and human hepatocyte growth factor. Proceedings of the National Academy of Sciences of the United States of America, 88, 7001–7005.

    Article  PubMed  CAS  Google Scholar 

  11. Naldini, L., Vigna, E., Narsimhan, R. P., Gaudino, G., Zarnegar, R., Michalopoulos, G. K., et al. (1991). Hepatocyte growth factor (HGF) stimulates the tyrosine kinase activity of the receptor encoded by the proto-oncogene c-MET. Oncogene, 6, 501–504.

    PubMed  CAS  Google Scholar 

  12. Bottaro, D. P., Rubin, J. S., Faletto, D. L., Chan, A. M., Kmiecik, T. E., Vande Woude, G. F., et al. (1991). Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science, 251, 802–804.

    Article  PubMed  CAS  Google Scholar 

  13. Comoglio, P. M. (2002). Trusolino L: Invasive growth: From development to metastasis. Journal of Clinical Investigation, 109, 857–862.

    Article  PubMed  CAS  Google Scholar 

  14. Montesano, R., Matsumoto, K., Nakamura, T., & Orci, L. (1991). Identification of a fibroblast-derived epithelial morphogen as hepatocyte growth factor. Cell, 67, 901–908.

    Article  PubMed  CAS  Google Scholar 

  15. Trusolino, L., & Comoglio, P. M. (2002). Scatter-factor and semaphorin receptors: Cell signalling for invasive growth. Nature Reviews Cancer, 2, 289–300.

    Article  PubMed  CAS  Google Scholar 

  16. Maina, F., Casagranda, F., Audero, E., Simeone, A., Comoglio, P. M., Klein, R., et al. (1996). Uncoupling of Grb2 from the Met receptor in vivo reveals complex roles in muscle development. Cell, 87, 531–542.

    Article  PubMed  CAS  Google Scholar 

  17. Ponzetto, C., Bardelli, A., Zhen, Z., Maina, F., Dalla, Z. P., Giordano, S., et al. (1994). A multifunctional docking site mediates signaling and transformation by the hepatocyte growth factor/scatter factor receptor family. Cell, 77, 261–271.

    Article  PubMed  CAS  Google Scholar 

  18. Zanetti, A., Stoppacciaro, A., Marzullo, A., Ciabatta, M., Fazioli, F., Prat, M., et al. (1998). Expression of Met protein and urokinase-type plasminogen activator receptor (uPA-R) in papillary carcinoma of the thyroid. Journal of Pathology, 186, 287–291.

    Article  PubMed  CAS  Google Scholar 

  19. Gaudino, G., Follenzi, A., Naldini, L., Collesi, C., Santoro, M., Gallo, K. A., et al. (1994). RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. European Molecular Biology Organization Journal, 13, 3524–3532.

    CAS  Google Scholar 

  20. Huff, J. L., Jelinek, M. A., Borgman, C. A., Lansing, T. J., & Parsons, J. T. (1993). The protooncogene c-sea encodes a transmembrane protein-tyrosine kinase related to the Met/hepatocyte growth factor/scatter factor receptor. Proceedings of the National Academy of Sciences of the United States of America, 90, 6140–6144.

    Article  PubMed  CAS  Google Scholar 

  21. Birchmeier, C., Birchmeier, W., Gherardi, E., & Vande Woude, G. F. (2003). Met, metastasis, motility and more. Nature Reviews. Molecular Cell Biology, 4, 915–925.

    Article  PubMed  CAS  Google Scholar 

  22. Gandino, L., Longati, P., Medico, E., Prat, M., & Comoglio, P. M. (1994). Phosphorylation of serine 985 negatively regulates the hepatocyte growth factor receptor kinase. Journal of Biological Chemistry, 269, 1815–1820.

    PubMed  CAS  Google Scholar 

  23. Peschard, P., Fournier, T. M., Lamorte, L., Naujokas, M. A., Band, H., Langdon, W. Y., et al. (2001). Mutation of the c-Cbl TKB domain binding site on the Met receptor tyrosine kinase converts it into a transforming protein. Molecular Cell, 8, 995–1004.

    Article  PubMed  CAS  Google Scholar 

  24. Furge, K. A., Zhang, Y. W., & Vande Woude, G. F. (2000). Met receptor tyrosine kinase: Enhanced signaling through adapter proteins. Oncogene, 19, 5582–5589.

    Article  PubMed  CAS  Google Scholar 

  25. Pelicci, G., Giordano, S., Zhen, Z., Salcini, A. E., Lanfrancone, L., Bardelli, A., et al. (1995). The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene, 10, 1631–1638.

    PubMed  CAS  Google Scholar 

  26. Weidner, K. M., Di, C. S., Sachs, M., Brinkmann, V., Behrens, J., & Birchmeier, W. (1996). Interaction between Gab1 and the c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature, 384, 173–176.

    Article  PubMed  CAS  Google Scholar 

  27. Gual, P., Giordano, S., Anguissola, S., Parker, P. J., & Comoglio, P. M. (2001). Gab1 phosphorylation: A novel mechanism for negative regulation of HGF receptor signaling. Oncogene, 20, 156–166.

    Article  PubMed  CAS  Google Scholar 

  28. Gual, P., Giordano, S., Williams, T. A., Rocchi, S., Van, O. E., & Comoglio, P. M. (2000). Sustained recruitment of phospholipase C-gamma to Gab1 is required for HGF-induced branching tubulogenesis. Oncogene, 19, 1509–1518.

    Article  PubMed  CAS  Google Scholar 

  29. Maroun, C. R., Naujokas, M. A., Holgado-Madruga, M., Wong, A. J., & Park, M. (2000). The tyrosine phosphatase SHP-2 is required for sustained activation of extracellular signal-regulated kinase and epithelial morphogenesis downstream from the met receptor tyrosine kinase. Molecular Cell Biology, 20, 8513–8525.

    Article  CAS  Google Scholar 

  30. Fournier, T. M., Kamikura, D., Teng, K., & Park, M. (1996). Branching tubulogenesis but not scatter of Madin–Darby canine kidney cells requires a functional Grb2 binding site in the Met receptor tyrosine kinase. Journal of Biological Chemistry, 271, 22211–22217.

    Article  PubMed  CAS  Google Scholar 

  31. O’brien, L. E., Tang, K., Kats, E. S., Schutz-Geschwender, A., Lipschutz, J. H., & Mostov, K. E. (2004). ERK and MMPs sequentially regulate distinct stages of epithelial tubule development. Developments in Cell, 7, 21–32.

    Article  CAS  Google Scholar 

  32. Marshall, C. J. (1995). Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation. Cell, 80, 179–185.

    Article  PubMed  CAS  Google Scholar 

  33. Graziani, A., Gramaglia, D., Cantley, L. C., & Comoglio, P. M. (1991). The tyrosine-phosphorylated hepatocyte growth factor/scatter factor receptor associates with phosphatidylinositol 3-kinase. Journal of Biological Chemistry, 266, 22087–22090.

    PubMed  CAS  Google Scholar 

  34. Ponzetto, C., Bardelli, A., Maina, F., Longati, P., Panayotou, G., Dhand, R., et al. (1993). A novel recognition motif for phosphatidylinositol 3-kinase binding mediates its association with the hepatocyte growth factor/scatter factor receptor. Molecular Cell Biology, 13, 4600–4608.

    CAS  Google Scholar 

  35. Royal, I., & Park, M. (1995). Hepatocyte growth factor-induced scatter of Madin–Darby canine kidney cells requires phosphatidylinositol 3-kinase. Journal of Biological Chemistry, 270, 27780–27787.

    Article  PubMed  CAS  Google Scholar 

  36. Trusolino, L., Cavassa, S., Angelini, P., Ando, M., Bertotti, A., Comoglio, P. M., et al. (2000). HGF/scatter factor selectively promotes cell invasion by increasing integrin avidity. FASEB Jounal, 14, 1629–1640.

    Article  CAS  Google Scholar 

  37. Xiao, G. H., Jeffers, M., Bellacosa, A., Mitsuuchi, Y., Vande Woude, G. F., & Testa, J. R. (2001). Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proceedings of the National Academy of Sciences of the United States of America, 98, 247–252.

    Article  PubMed  CAS  Google Scholar 

  38. Wells, C. M., Abo, A., & Ridley, A. J. (2002). PAK4 is activated via PI3K in HGF-stimulated epithelial cells. Journal of Cell Science, 115, 3947–3956.

    Article  PubMed  CAS  Google Scholar 

  39. Boccaccio, C., Ando, M., Tamagnone, L., Bardelli, A., Michieli, P., Battistini, C., et al. (1998). Induction of epithelial tubules by growth factor HGF depends on the STAT pathway. Nature, 391, 285–288.

    Article  PubMed  CAS  Google Scholar 

  40. Corso, S., Comoglio, P. M., & Giordano, S. (2005). Cancer therapy: Can the challenge be MET. Trends in Molecular Medicine, 11, 284–292.

    Article  PubMed  CAS  Google Scholar 

  41. Palka, H. L., Park, M., & Tonks, N. K. (2003). Hepatocyte growth factor receptor tyrosine kinase met is a substrate of the receptor protein-tyrosine phosphatase DEP-1. Journal of Biological Chemistry, 278, 5728–5735.

    Article  PubMed  CAS  Google Scholar 

  42. Sangwan, V., Paliouras, G. N., Cheng, A., Dube, N., Tremblay, M. L., & Park, M. (2006). Protein-tyrosine phosphatase 1B deficiency protects against Fas-induced hepatic failure. Journal of Biological Chemistry, 281, 221–228.

    Article  PubMed  CAS  Google Scholar 

  43. Machide, M., Hashigasako, A., Matsumoto, K., & Nakamura, T. (2006). Contact inhibition of hepatocyte growth regulated by functional association of the c-Met/hepatocyte growth factor receptor and LAR protein-tyrosine phosphatase. Journal of Biological Chemistry, 281, 8765–8772.

    Article  PubMed  CAS  Google Scholar 

  44. Birchmeier, C., & Gherardi, E. (1998). Developmental roles of HGF/SF and its receptor, the c-Met tyrosine kinase. Trends in Cell Biology, 8, 404–410.

    Article  PubMed  CAS  Google Scholar 

  45. Uehara, Y., Minowa, O., Mori, C., Shiota, K., Kuno, J., Noda, T., et al. (1995). Placental defect and embryonic lethality in mice lacking hepatocyte growth factor/scatter factor. Nature, 373, 702–705.

    Article  PubMed  CAS  Google Scholar 

  46. Bladt, F., Riethmacher, D., Isenmann, S., Aguzzi, A., & Birchmeier, C. (1995). Essential role for the c-Met receptor in the migration of myogenic precursor cells into the limb bud. Nature, 376, 768–771.

    Article  PubMed  CAS  Google Scholar 

  47. Schmidt, C., Bladt, F., Goedecke, S., Brinkmann, V., Zschiesche, W., Sharpe, M., et al. (1995). Scatter factor/hepatocyte growth factor is essential for liver development. Nature, 373, 699–702.

    Article  PubMed  CAS  Google Scholar 

  48. Maina, F., Pante, G., Helmbacher, F., Andres, R., Porthin, A., Davies, A. M., et al. (2001). Coupling Met to specific pathways results in distinct developmental outcomes. Molecular Cell, 7, 1293–1306.

    Article  PubMed  CAS  Google Scholar 

  49. Huh, C. G., Factor, V. M., Sanchez, A., Uchida, K., Conner, E. A., & Thorgeirsson, S. S. (2004). Hepatocyte growth factor/c-met signaling pathway is required for efficient liver regeneration and repair. Proceedings of the National Academy of Sciences of the United States of America, 101, 4477–4482.

    Article  PubMed  CAS  Google Scholar 

  50. Chmielowiec, J., Borowiak, M., Morkel, M., Stradal, T., Munz, B., Werner, S., et al. (2007). c-Met is essential for wound healing in the skin. Journal of Cell Biology, 177, 151–162.

    Article  PubMed  CAS  Google Scholar 

  51. Bussolino, F., Di Renzo, M. F., Ziche, M., Bocchietto, E., Olivero, M., Naldini, L., et al. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. Journal of Cell Biology, 119, 629–641.

    Article  PubMed  CAS  Google Scholar 

  52. Boccaccio, C., Sabatino, G., Medico, E., Girolami, F., Follenzi, A., Reato, G., et al. (2005). The MET oncogene drives a genetic programme linking cancer to haemostasis. Nature, 434, 396–400.

    Article  PubMed  CAS  Google Scholar 

  53. Boccaccio, C., & Medico, E. (2006). Cancer and blood coagulation. Cellular and Molecular Life Sciences, 63, 1024–1027.

    Article  PubMed  CAS  Google Scholar 

  54. Rickles, F. R., & Levine, M. N. (2001). Epidemiology of thrombosis in cancer. Acta Haematologica, 106, 6–12.

    Article  PubMed  CAS  Google Scholar 

  55. Rong, S., Segal, S., Anver, M., Resau, J. H., & Vande Woude, G. F. (1994). Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proceedings of the National Academy of Sciences of the United States of America, 91, 4731–4735.

    Article  PubMed  CAS  Google Scholar 

  56. Taulli, R., Scuoppo, C., Bersani, F., Accornero, P., Forni, P. E., Miretti, S., et al. (2006). Validation of Met as a therapeutic target in alveolar and embryonal rhabdomyosarcoma. Cancer Research, 66, 4742–4749.

    Article  PubMed  CAS  Google Scholar 

  57. Lutterbach, B., Zeng, Q., Davis, L. J., Hatch, H., Hang, G., Kohl, N. E., et al. (2007). Lung cancer cell lines harboring MET gene amplification are dependent on Met for growth and survival. Cancer Research, 67, 2081–2088.

    Article  PubMed  CAS  Google Scholar 

  58. Takayama, H., LaRochelle, W. J., Sharp, R., Otsuka, T., Kriebel, P., Anver, M., et al. (1997). Diverse tumorigenesis associated with aberrant development in mice overexpressing hepatocyte growth factor/scatter factor. Proceedings of the National Academy of Sciences of the United States of America, 94, 701–706.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, R., Ferrell, L. D., Faouzi, S., Maher, J. J., & Bishop, J. M. (2001). Activation of the Met receptor by cell attachment induces and sustains hepatocellular carcinomas in transgenic mice. Journal of Cell Biology, 153, 1023–1034.

    Article  PubMed  CAS  Google Scholar 

  60. Schmidt, L., Junker, K., Nakaigawa, N., Kinjerski, T., Weirich, G., Miller, M., et al. (1999). Novel mutations of the MET proto-oncogene in papillary renal carcinomas. Oncogene, 18, 2343–2350.

    Article  PubMed  CAS  Google Scholar 

  61. Ferracini, R., Di Renzo, M. F., Scotlandi, K., Baldini, N., Olivero, M., Lollini, P., et al. (1995). The Met/HGF receptor is over-expressed in human osteosarcomas and is activated by either a paracrine or an autocrine circuit. Oncogene, 10, 739–749.

    PubMed  CAS  Google Scholar 

  62. Ferracini, R., Olivero, M., Di Renzo, M. F., Martano, M., De, G. C., Nanni, P., et al. (1996). Retrogenic expression of the MET proto-oncogene correlates with the invasive phenotype of human rhabdomyosarcomas. Oncogene, 12, 1697–1705.

    PubMed  CAS  Google Scholar 

  63. Tuck, A. B., Park, M., Sterns, E. E., Boag, A., & Elliott, B. E. (1996). Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. American Journal of Pathology, 148, 225–232.

    PubMed  CAS  Google Scholar 

  64. Koochekpour, S., Jeffers, M., Rulong, S., Taylor, G., Klineberg, E., Hudson, E. A., et al. (1997). Met and hepatocyte growth factor/scatter factor expression in human gliomas. Cancer Research, 57, 5391–5398.

    PubMed  CAS  Google Scholar 

  65. Kijima, Y., Hokita, S., Yoshinaka, H., Itoh, T., Koriyama, C., Eizuru, Y., et al. (2002). Amplification and overexpression of c-met gene in Epstein–Barr virus-associated gastric carcinomas. Oncology, 62, 60–65.

    Article  PubMed  CAS  Google Scholar 

  66. Nakazawa, K., Dobashi, Y., Suzuki, S., Fujii, H., Takeda, Y., & Ooi, A. (2005). Amplification and overexpression of c-erbB-2, epidermal growth factor receptor, and c-Met in biliary tract cancers. Journal of Pathology, 206, 356–365.

    Article  PubMed  CAS  Google Scholar 

  67. Engelman, J. A., Zejnullahu, K., Mitsudomi, T., Song, Y., Hyland, C., Park, J. O., et al. (2007). MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science, 316, 1039–1043.

    Article  PubMed  CAS  Google Scholar 

  68. Christensen, J. G., Burrows, J., & Salgia, R. (2005). c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Letters, 225, 1–26.

    Article  PubMed  CAS  Google Scholar 

  69. Di Renzo, M. F., Olivero, M., Martone, T., Maffe, A., Maggiora, P., Stefani, A. D., et al. (2000). Somatic mutations of the MET oncogene are selected during metastatic spread of human HNSC carcinomas. Oncogene, 19, 1547–1555.

    Article  PubMed  Google Scholar 

  70. Ivan, M., Bond, J. A., Prat, M., Comoglio, P. M., & Wynford-Thomas, D. (1997). Activated Ras and Ret oncogenes induce over-expression of c-Met (hepatocyte growth factor receptor) in human thyroid epithelial cells. Oncogene, 14, 2417–2423.

    Article  PubMed  CAS  Google Scholar 

  71. Shirasaki, F., Makhluf, H. A., LeRoy, C., Watson, D. K., & Trojanowska, M. (1999). Ets transcription factors cooperate with Sp1 to activate the human tenascin-C promoter. Oncogene, 18, 7755–7764.

    Article  PubMed  CAS  Google Scholar 

  72. Gambarotta, G., Boccaccio, C., Giordano, S., Ando, M., Stella, M. C., & Comoglio, P. M. (1996). Ets up-regulates MET transcription. Oncogene, 13, 1911–1917.

    PubMed  CAS  Google Scholar 

  73. Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., & Comoglio, P. M. (2003). Hypoxia promotes invasive growth by transcriptional activation of the Met protooncogene. Cancer Cell, 3, 347–361.

    Article  PubMed  Google Scholar 

  74. Morotti, A., Mila, S., Accornero, P., Tagliabue, E., & Ponzetto, C. (2002). K252a inhibits the oncogenic properties of Met, the HGF receptor. Oncogene, 21, 4885–4893.

    Article  PubMed  CAS  Google Scholar 

  75. Berthou, S., Aebersold, D. M., Schmidt, L. S., Stroka, D., Heigl, C., Streit, B., et al. (2004). The Met kinase inhibitor SU11274 exhibits a selective inhibition pattern toward different receptor mutated variants. Oncogene, 23, 5387–5393.

    Article  PubMed  CAS  Google Scholar 

  76. Christensen, J. G., Schreck, R., Burrows, J., Kuruganti, P., Chan, E., Le, P., et al. (2003). A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Research, 63, 7345–7355.

    PubMed  CAS  Google Scholar 

  77. Smolen, G. A., Sordella, R., Muir, B., Mohapatra, G., Barmettler, A., Archibald, H., et al. (2006). Amplification of MET may identify a subset of cancers with extreme sensitivity to the selective tyrosine kinase inhibitor PHA-665752. Proceedings of the National Academy of Sciences of the United States of America, 103, 2316–2321.

    Article  PubMed  CAS  Google Scholar 

  78. Date, K., Matsumoto, K., Kuba, K., Shimura, H., Tanaka, M., & Nakamura, T. (1998). Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene, 17, 3045–3054.

    Article  PubMed  CAS  Google Scholar 

  79. Matsumoto, K., & Nakamura, T. (2003). NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Science, 94, 321–327.

    Article  PubMed  CAS  Google Scholar 

  80. Cao, B., Su, Y., Oskarsson, M., Zhao, P., Kort, E. J., Fisher, R. J., et al. (2001). Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proceedings of the National Academy of Sciences of the United States of America, 98, 7443–7448.

    Article  PubMed  CAS  Google Scholar 

  81. Burgess, T., Coxon, A., Meyer, S., Sun, J., Rex, K., Tsuruda, T., et al. (2006). Fully human monoclonal antibodies to hepatocyte growth factor with therapeutic potential against hepatocyte growth factor/c-Met-dependent human tumors. Cancer Research, 66, 1721–1729.

    Article  PubMed  CAS  Google Scholar 

  82. Mazzone, M., Basilico, C., Cavassa, S., Pennacchietti, S., Risio, M., Naldini, L., et al. (2004). An uncleavable form of pro-scatter factor suppresses tumor growth and dissemination in mice. Journal of Clinical Investigation, 114, 1418–1432.

    Article  PubMed  CAS  Google Scholar 

  83. Michieli, P., Mazzone, M., Basilico, C., Cavassa, S., Sottile, A., Naldini, L., et al. (2004). Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell, 6, 61–73.

    Article  PubMed  CAS  Google Scholar 

  84. Kong-Beltran, M., Stamos, J., & Wickramasinghe, D. (2004). The Sema domain of Met is necessary for receptor dimerization and activation. Cancer Cell, 6, 75–84.

    Article  PubMed  CAS  Google Scholar 

  85. Petrelli, A., Circosta, P., Granziero, L., Mazzone, M., Pisacane, A., Fenoglio, S., et al. (2006). Ab-induced ectodomain shedding mediates hepatocyte growth factor receptor down-regulation and hampers biological activity. Proceedings of the National Academy of Sciences of the United States of America, 103, 5090–5095.

    Article  PubMed  CAS  Google Scholar 

  86. Corso, S., Migliore, C., Ghiso, E., De Rosa, G., Comoglio, P. M., & Giordano, S. (2007). Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene (in press). DOI 10.1038/sj.onc.1210697.

Download references

Acknowledgements

We would like to thank Andrea Bertotti for micrographs. Work in the authors’ laboratory is supported by AIRC (Associazione Italiana per la Ricerca sul Cancro), MIUR (Ministero dell’Isruzione, Universita’ e Ricerca), Compagnia San Paolo, Fondazione Cassa di Risparmio di Torino. AG is supported by an AIRC fellowship.

Note added in Proof

During the revision of this review, another paper was published that demonstrated reduced proliferation, xenograft growth and experimental metastasis formation following shRNA-mediated down-regulation of MET in a gastric carcinoma cell line with amplification of MET gene [86].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo M. Comoglio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gentile, A., Trusolino, L. & Comoglio, P.M. The Met tyrosine kinase receptor in development and cancer. Cancer Metastasis Rev 27, 85–94 (2008). https://doi.org/10.1007/s10555-007-9107-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9107-6

Keywords

Navigation