Skip to main content
Log in

Involvement of anion exchanger-2 in apoptosis of endothelial cells induced by high glucose through an mPTP-ROS-Caspase-3 dependent pathway

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Excess apoptosis of endothelial cells (EC) plays crucial roles in the onset and progression of vasculopathy in diabetes mellitus. Anion exchanger-2 (AE2) might be involved in the vasculopathy. However, little is known about the molecular mechanisms that AE2 mediated the apoptosis of EC. The purpose of this study was to explore the role of AE2 in the apoptosis of HUVECs induced by high glucose (HG) and its possible mechanisms. First, HUVECs were exposed to different glucose concentrations (5.5, 17.8, 35.6, 71.2 and 142.4 mmol/l, respectively, pH = 7.40) for different time points (12, 24, 48, 72, 120, and 168 h, respectively). Intracellular Cl− concentration ([Cl−]i), AE2 expression and the apoptosis were assayed. Then, 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS), Cl−-free media or specific RNA interference (RNAi) for AE2 was used to confirm whether AE2 could mediate the apoptosis induced by HG. Finally, the mechanisms of the AE2-mediated apoptosis were investigated by detecting mitochondrial permeability transition pore (mPTP, ΔΨm) openings, reactive oxygen species (ROS) levels and Caspase-3 activity. We found that HG upregulated the AE2 expression and activity, increased [Cl−]i and induced the apoptosis in a time- and concentration-dependent manner. The apoptosis of HUVECs by HG was possibly mediated by AE2 through an mPTP-ROS-Caspase-3 dependent pathway. These findings suggested that AE2 was likely to be a glucose-sensitive transmembrane transporter and a novel potential therapeutic target for diabetic vasculopathy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ruderman NB, Williamson JR, Brownlee M (1992) Glucose and diabetic vascular disease. FASEB J 6:2905–2914

    CAS  PubMed  Google Scholar 

  2. Pezet M, Verdetti J, Faury G (2004) Effect of glucose concentration on vascular function in aging: Action on calcium fluxes and vasomotricity induced by elastin peptides. J Soc Biol 198:279–286

    CAS  PubMed  Google Scholar 

  3. The Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development progression of long-term complications in insulin- dependent diabetes mellitus. N Engl J Med 329:977–986

    Article  Google Scholar 

  4. UK Prospective Diabetes Study Group (1998) Intensive blood–glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853

    Article  Google Scholar 

  5. Nakagami H, Kaneda Y, Ogihara T, Morishita R (2005) Endothelial dysfunction in hyperglycemia as a trigger of atherosclerosis. Curr Diabetes Rev 1:59–63

    Article  CAS  PubMed  Google Scholar 

  6. Isermann B, Vinnikov IA, Madhusudhan T et al (2007) Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 13:1349–1358

    Article  CAS  PubMed  Google Scholar 

  7. Nagaraj RH, Oya-Ito T, Bhat M, Liu B (2005) Dicarbonyl stress and apoptosis of vascular cells: prevention by alpha B-crystallin. Ann N Y Acad Sci 1043:158–165

    Article  CAS  PubMed  Google Scholar 

  8. Detaille D, Guigas B, Chauvin C et al (2005) Metformin prevents high-glucose-induced endothelial cell death through a mitochondrial permeability transition-dependent process. Diabetes 54:2179–2187

    Article  CAS  PubMed  Google Scholar 

  9. Sheu ML, Ho FM, Yang RS et al (2005) High glucose induces human endothelial cell apoptosis through a phosphoinositide 3-kinase-regulated cyclooxygenase-2 pathway. Arterioscler Thromb Vasc Biol 25:539–545

    Article  CAS  PubMed  Google Scholar 

  10. Varma S, Lal BK, Zheng R et al (2005) Hyperglycemia alters PI3 K and Akt signaling and leads to endothelial cell proliferative dysfunction. Am J Physiol Heart Circ Physiol 289:H1744–H1751

    Article  CAS  PubMed  Google Scholar 

  11. Ido Y, Carling D, Ruderman N (2002) Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes 51:159–167

    Article  CAS  PubMed  Google Scholar 

  12. Cheng G, Shao Z, Chaudhari B, Agrawal DK (2007) Involvement of chloride channels in TGF-B1-induced apoptosis of human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 293:L1339–L1347

    Article  CAS  PubMed  Google Scholar 

  13. Lang F, Föller M, Lang K et al (2007) Cell volume regulatory ion channels in cell proliferation and cell death. Methods Enzymol 428:209–225

    Article  PubMed  Google Scholar 

  14. Guan YY, Wang GL, Zhou JG (2006) The ClC-3 Cl-channel in cell volume regulation, proliferation and apoptosis in vascular smooth muscle cells. Trends Pharmacol Sci 27:290–296

    Article  CAS  PubMed  Google Scholar 

  15. Shiio Y, Suh KS, Lee H, Yuspa SH, Eisenman RN, Aebersold R (2006) Quantitative proteomic analysis of myc-induced apoptosis: a direct role for Myc induction of the mitochondrial chloride ion channel, mtCLIC/CLIC4. J Biol Chem 281:2750–2756

    Article  CAS  PubMed  Google Scholar 

  16. Lemonnier L, Shuba Y, Crepin A et al (2004) Bcl-2-dependent modulation of swelling-activated Cl- current and ClC-3 expression in human prostate cancer epithelial cells. Cancer Res 64:4841–4848

    Article  CAS  PubMed  Google Scholar 

  17. Varela D, Simon F, Riveros A, Jørgensen F, Stutzin A (2004) NAD(P)H oxidase-derived H2O2 signals chloride channel activation in cell volume regulation and cell proliferation. J Biol Chem 279:13301–13304

    Article  CAS  PubMed  Google Scholar 

  18. Shennan DB (2008) Swelling-induced taurine transport: relationship with chloride channels, anion-exchangers and other swelling-activated transport pathways. Cell Physiol Biochem 21:15–28

    Article  CAS  PubMed  Google Scholar 

  19. Faber S, Lang HJ, Scholkens BA, Mutschler E (1998) Intracellular pH regulation in bovine aortic endothelial cells: evidence of both Na+/H+ exchange and Na+-dependent Cl-/HCO3-exchange. Cell Physiol Biochem 8:202–211

    Article  CAS  PubMed  Google Scholar 

  20. Alper SL (2006) Molecular physiology of SLC4 anion exchangers. Exp Physiol 91:153–161

    Article  CAS  PubMed  Google Scholar 

  21. Liu CJ, Hwang JM, Wu TT et al (2008) Anion exchanger inhibitor DIDS induces human poorly-differentiated malignant hepatocellular carcinoma HA22T cell apoptosis. Mol Cell Biochem 308:117–125

    Article  CAS  PubMed  Google Scholar 

  22. Fujita H, Ishizaki Y, Yanagisawa A, Morita I, Murota SI, Ishikawa K (1999) Possible involvement of a chloride-bicarbonate exchanger in apoptosis of endothelial cells and cardiomyocytes. Cell Biol Int 23:241–249

    Article  CAS  PubMed  Google Scholar 

  23. Huang Q, He M, Chen H et al (2007) Protective effects of sasanqua-saponin on injury of endothelial cells induced by anoxia and reoxygenation in vitro. Basic Clin Pharmacol Toxicol 101:301–308

    Article  CAS  PubMed  Google Scholar 

  24. Reynolds A, Leake D, Boese Q et al (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22:326–330

    Article  CAS  PubMed  Google Scholar 

  25. Ui-Tei K, Naito Y, Takahashi F et al (2004) Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res 32:936–948

    Article  CAS  PubMed  Google Scholar 

  26. Zang M, Gong J, Luo L et al (2008) Characterization of S338 phosphorylation for Raf-1 activation. J Biol Chem 283:31429–31437

    Article  CAS  PubMed  Google Scholar 

  27. Lai ZF, Shao Z, Chen YZ, He M, Huang Q, Nishi K (2004) Effects of sasanquasaponin on ischemia and reperfusion injury in mouse hearts. J Pharmacol Sci 94:313–324

    Article  CAS  PubMed  Google Scholar 

  28. Alvarez BV, Fujinaga J, Casey JR (2001) Molecular basis for angiotensin II-induced increase of chloride/bicarbonate exchange in the myocardium. Circ Res 89:1246–1253

    Article  CAS  PubMed  Google Scholar 

  29. Mardones P, Medina JF, Elferink RP (2008) Activation of cyclic AMP signaling in Ae2-deficient mouse fibroblasts. J Biol Chem 283:12146–12153

    Article  CAS  PubMed  Google Scholar 

  30. Ghio AJ, Grayck EN, Turi J et al (2003) Superoxide-dependent iron uptake: a new role for anion exchanger protein 2. Am J Respir Cell Mol Biol 29:653–660

    Article  CAS  PubMed  Google Scholar 

  31. Stewart AK, Kurschat CE, Vaughan-Jones RD, Alper SL (2009) Putative re-entrant loop 1 of AE2 transmembrane domain has a major role in acute regulation of anion exchange by pH. J Biol Chem 284:6126–6139

    Article  CAS  PubMed  Google Scholar 

  32. Humphreys BD, Jiang L, Chernova MN, Alper SL (1995) Hypertonic activation of AE2 anion exchanger in Xenopus oocytes via NHE-mediated intracellular alkalinization. Am J Physiol 268:C201–C209

    CAS  PubMed  Google Scholar 

  33. Frische S, Zolotarev AS, Kim YH et al (2004) AE2 isoforms in rat kidney: immunohistochemical localization and regulation in response to chronic NH4Cl loading. Am J Physiol Renal Physiol 286:F1163–F1170

    Article  CAS  PubMed  Google Scholar 

  34. Nickell WT, Kleene NK, Kleene SJ (2007) Mechanisms of neuronal chloride accumulation in intact mouse olfactory epithelium. J Physiol 583:1005–1020

    Article  CAS  PubMed  Google Scholar 

  35. Alper SL (2009) Molecular physiology and genetics of Na+-independent SLC4 anion exchangers. J Exp Biol 212:1672–1678

    Article  CAS  PubMed  Google Scholar 

  36. Chernova MN, Stewart AK, Jiang L, Friedman DJ, Kunes YZ, Alper SL (2003) Structure–function relationships of AE2 regulation by Ca(i)(2+)-sensitive stimulators NH(4+) and hypertonicity. Am J Physiol Cell Physiol 284:C1235–C1246

    CAS  PubMed  Google Scholar 

  37. Stewart AK, Kurschat CE, Burns D, Banger N, Vaughan-Jones RD, Alper SL (2007) Transmembrane domain histidines contribute to regulation of AE2-mediated anion exchange by pH. Am J Physiol Cell Physiol 292:C909–C918

    Article  CAS  PubMed  Google Scholar 

  38. Li Y, Wu H, Khardori R, Song YH, Lu YW, Geng YJ (2009) Insulin-like growth factor-1 receptor activation prevents high glucose-induced mitochondrial dysfunction, cytochrome-c release and apoptosis. Biochem Biophys Res Commun 384:259–264

    Article  CAS  PubMed  Google Scholar 

  39. Chen G, Shen X, Yao J et al (2009) Ablation of NF-kappaB expression by small interference RNA prevents the dysfunction of human umbilical vein endothelial cells induced by high glucose. Endocrine 35:63–74

    Article  PubMed  Google Scholar 

  40. Dong Z, Wang J, Zhong Q (2003) Postmitochondrial regulation of apoptosis by bicarbonate. Exp Cell Res 288:301–312

    Article  CAS  PubMed  Google Scholar 

  41. Fujita H, Morita I, Murota S (2000) Hydrogen peroxide induced apoptosis of endothelial cells concomitantly with cycloheximide. J Atheroscler Thromb 7:209–215

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Natural Scientific Foundation of China (No. 30660058 and No. 30860111). We thank Dr. Huixin Deng, Xuan Jin, Shiwen Luo and Gregory D. Jensen for generous help in correcting the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming He.

Additional information

Qing Li, Yuan-Hong Chen and Li Li are equally contributed to this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, QR., Li, Q., Chen, YH. et al. Involvement of anion exchanger-2 in apoptosis of endothelial cells induced by high glucose through an mPTP-ROS-Caspase-3 dependent pathway. Apoptosis 15, 693–704 (2010). https://doi.org/10.1007/s10495-010-0477-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0477-9

Keywords

Navigation