Skip to main content
Log in

In vivo evolutionary engineering of a boron-resistant bacterium: Bacillus boroniphilus

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Boron is an industrially and biologically important element. However, the mechanisms of boron tolerance and its transport in bacteria and many other living systems are still not clearly understood. In this study, the boron resistance level of a boron-tolerant bacterium, Bacillus boroniphilus DSM 17376, was improved up to 300 mmol l−1 boron, by employing an in vivo evolutionary engineering strategy based on batch selection under continuous exposure to gradually increasing boron stress levels. The resistance was heterogeneous within the final mutant population which ranged from about 1- to 16-fold of the wild type resistance at 150 mmol l−1 boron stress level. Boron-resistant mutants had significant cross-resistance to iron and copper stresses, and were also cross-resistant to salt (NaCl) stress, suggesting a common resistance mechanism between these stress types. Additionally, highly boron-resistant mutants had up to 2.8-fold higher boron contents than the wild-type, when exposed to high levels of (150 mmol l−1) continuous boron stress throughout their cultivation. It was shown that evolutionary engineering is a successful approach to significantly increase bacterial boron resistance and investigate the complex mechanism of boron tolerance and transport in microbial systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed I, Fujiwara T (2010) Mechanism of boron tolerance in soil bacteria. Can J Microbiol 56:22–26

    Article  PubMed  CAS  Google Scholar 

  • Ahmed I, Yokota A, Fujiwara T (2007a) A novel highly boron tolerant bacterium, Bacillus boroniphilus sp. nov., isolated from soil, that requires boron for its growth. Extremophiles 11:217–224

    Article  PubMed  CAS  Google Scholar 

  • Ahmed I, Yokota A, Fujiwara T (2007b) Chimaereicella boritolerans sp nov., a boron-tolerant and alkaliphilic bacterium of the family Flavobacteriaceae isolated from soil. Int J Syst Evol Microbiol 57(Pt 5):986–992

    Article  PubMed  CAS  Google Scholar 

  • Ahmed I, Yokota A, Fujiwara T (2007c) Gracibacillus boraciitolerans sp nov, a highly boron-tolerant and moderately halotolerant bacterium isolated from soil. Int J Syst Evol Microbiol 57(Pt 4):796–802

    Article  PubMed  CAS  Google Scholar 

  • Argust P (1998) Distribution of boron in the environment. Biol Trace Elem Res 66:131–143

    Article  PubMed  CAS  Google Scholar 

  • Banuelos GS, LeDuc D, Johnson J (2010) Evaluating the tolerance of young hybrid poplar trees to recycled waters high in salinity and boron. Int J Phytoremediation 12:419–439

    Article  PubMed  CAS  Google Scholar 

  • Bennett A, Rowe RI, Soch N, Eckhert CD (1999) Boron stimulates yeast (Saccharomyces cerevisiae) growth. J Nutr 129:2236–2238

    PubMed  CAS  Google Scholar 

  • Bolanos L, Redondo-Nieto M, Bonilla I, Wall LG (2002) Boron requirement in the Discaria trinervis (Rhamnaceae) and Frankia symbiotic relationship. Its essentiality for Frankia BCU110501 growth and nitrogen fixation. Physiol Plant 115:563–570

    Article  PubMed  CAS  Google Scholar 

  • Bolanos L, Lukaszewski K, Bonilla I, Blevins D (2004) Why Boron? Plant Physiol Biochem 42:907–912

    Article  PubMed  CAS  Google Scholar 

  • Bonilla I, Garcia-Gonzalez M, Mateo P (1990) Boron requirement in Cyanobacteria. Its possible role in early evolution of photosynthetic organisms. Plant Physiol 94:1554–1560

    Article  PubMed  CAS  Google Scholar 

  • Çakar ZP, Seker UOS, Tamerler C, Sonderegger M, Sauer U (2005) Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae. FEMS Yeast Res 5:569–578

    Article  PubMed  Google Scholar 

  • Çakar ZP, Alkim C, Turanli B, Tokman N, Akman S, Sarikaya M, Tamerler C, Benbadis L, François JM (2009) Isolation of cobalt hyper-resistant mutants of Saccharomyces cerevisiae by in vivo evolutionary engineering approach. J Biotechnol 143:130–138

    Article  PubMed  Google Scholar 

  • Chen GH (2004) Electrochemical technologies in wastewater treatment. Sep Purif Technol 38:11–41

    Article  Google Scholar 

  • Chen X, Schauder S, Potier N, van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549

    Article  PubMed  CAS  Google Scholar 

  • Daliparthy J, Barker AV, Mondal SS (1994) Potassium fractions with other nutrients in crops- a review focusing on the tropics. J Plant Nutr 17:1859–1886

    Article  CAS  Google Scholar 

  • Darmency V, Renaud P (2006) Tin-free radical reactions mediated by organoboron compounds. Radicals in Synthesis I: Methods and Mechanisms. Top Curr Chem 263:71–106

    Article  CAS  Google Scholar 

  • Dykhuizen DE, Hartl DL (1983) Selection in chemostats. Microbiol Rev 47:150–168

    PubMed  CAS  Google Scholar 

  • Gentz MC, Grace JK (2006) A review of boron toxicity in insects with an emphasis on termites. J Agric Urban Entomol 23:201–207

    CAS  Google Scholar 

  • Grieve CM, Poss JA, Grattan SR, Suarez DL, Smith TE (2010) The combined effects of salinity and excess boron on mineral ion relations in broccoli. Sci Hortic 125:179–187

    Article  CAS  Google Scholar 

  • Guimaraes PMR, François J, Parrou JL, Teixeria JA, Domingues L (2008) Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Appl Environ Microbiol 74:1748–1756

    Article  PubMed  CAS  Google Scholar 

  • Hayes JE, Reid RJ (2004) Boron tolerance in barley is mediated by efflux of boron from the roots. Plant Physiol 136:3376–3382

    Article  PubMed  CAS  Google Scholar 

  • Howe PD (1998) A review of boron effects in the environment. Biol Trace Elem Res 66:153–166

    Article  PubMed  CAS  Google Scholar 

  • Kaya A, Karakaya HC, Fomenko DE, Gladyshev VN, Koc A (2009) Identification of a novel system for boron transport: Atr1 is a main boron exporter in yeast. Mol Cell Biol 29:3665–3674

    Article  PubMed  CAS  Google Scholar 

  • Kazanskii AG, Mell H, Terukov EI, Forsh PA (2002) Effect of boron dopant on the photoconductivity of microcrystalline hydrogenated silicon films. Semiconductors 36:41–44

    Article  Google Scholar 

  • Lawrence CW (1991) Classical mutagenesis techniques. Methods Enzymol 194:456–464

    Google Scholar 

  • Lewin JC (1966) Physiological studies of the boron requirement of the diatom, Cylindrotheca fusiformis Reimann and Lewin. J Exp Bot 17:473–479

    Article  CAS  Google Scholar 

  • Lindquist J (2010) A Five-Tube MPN Table (on-line). Available from: http://www.jlindquist.net/generalmicro/102dil3a.html. August 2010, last date accessed

  • Martinez-Ballesta MD, Bastias E, Zhu C, Schaffner AR, Gonzalez-Maro B, Gonzalez-Murua C, Carjaval M (2008) Boric acid and salinity effects on maize roots. Response of aquaporins ZmPIP1 and ZmPIP2, and plasma membrane H+-ATPase, in relation to water and nutrient uptake. Physiol Plant 132:479–490

    Article  CAS  Google Scholar 

  • Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105:1103–1108

    Article  PubMed  CAS  Google Scholar 

  • Miwa H, Ahmed I, Yokota A, Fujiwara T (2009) Lysinibacillus parviboronicapiens sp nov, a low-boron-containing bacterium isolated from soil. Int J Syst Evol Microbiol 59(Pt 6):1427–1432

    Article  PubMed  CAS  Google Scholar 

  • Nielsen FH (2002) The nutritional importance and pharmacological potential of boron for higher animals and human. In: Goldbach HE, Rerkasem B, Wimmer MA, Brown PH, Thellier M, Bell RW (eds) Boron in plant and animal nutrition. Kluwer Academic/Plenum Publishers, New York, pp 37–50

    Google Scholar 

  • Pahl MV, Culver BD, Vaziri ND (2005) Boron and the kidney. J Ren Nutr 15:362–370

    Article  PubMed  Google Scholar 

  • Rowe RI, Eckhert CD (1999) Boron is required for zebrafish embryogenesis. J Exp Biol 202:1649–1654

    PubMed  CAS  Google Scholar 

  • Rowe RI, Bouzan C, Nabili S, Eckhert CD (1998) The response of trout and zebrafish embryos to low and high boron concentrations is U-shaped. Biol Trace Elem Res 66:262–270

    Article  Google Scholar 

  • Russek E, Colwell RR (1983) Computation of most probable numbers. Appl Environ Microbiol 45:1646–1650

    PubMed  CAS  Google Scholar 

  • Sauer U (2001) Evolutionary engineering of industrially important microbial phenotypes. Adv Biochem Eng Biotechnol 73:130–166

    Google Scholar 

  • Schubert DM (2003) Borates in industrial use. In: Roesky HW, Atwood DA (eds) Group 13 Chemistry III: Industrial Applications. Structure & Bonding, vol 105. Springer Verlag, Berlin, Heidelberg, New York, pp 1–40

    Google Scholar 

  • Scialli AR, Bonde JP, Bruske-Hohlfeld I, Culver BD, Li YH, Sullivan FM (2010) An overview of male reproductive studies of boron with an emphasis on studies of highly exposed Chinese workers. Reprod Toxicol 29:10–24

    Article  PubMed  CAS  Google Scholar 

  • Smith TE, Grattan SR, Grieve CM, Poss JA, Suarez DL (2010) Salinity’s influence on boron toxicity in broccoli: II. Impacts on boron uptake, uptake mechanisms and tissue ion relations. Agric Water Manage 97:783–791

    Article  Google Scholar 

  • Sonderegger M, Sauer U (2003) Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 69:1990–1998

    Article  PubMed  CAS  Google Scholar 

  • Sonderegger M, Schümperli M, Sauer U (2005) Selection of quiescent Escherichia coli with high metabolic activity. Metab Eng 7:4–9

    Article  PubMed  CAS  Google Scholar 

  • Steiner P, Sauer U (2003) Long-term continuous evolution of acetate resistant Acetobacter aceti. Biotechnol Bioeng 84:40–44

    Article  PubMed  CAS  Google Scholar 

  • van Maris AJA, Winkler AA, Kuyper M, de Laat WTAM, van Dijken JP, Pronk JT (2007) Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component. Biofuels 108:179–204

    Article  Google Scholar 

  • Warington K (1923) The effect of boric acid and borax on the broad bean and certain other plants. Ann Bot 37:629–672

    Google Scholar 

  • Weikert C, Sauer U, Bailey JE (1997) Use of a glycerol-limited, long-term chemostat for isolation of Escherichia coli mutants with improved physiological properties. Microbiology 143:1567–1574

    Article  PubMed  CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann B, Boles E (2008) Codon-optimized bacterial genes improve L-arabinose fermentation in recombinant Saccharomyces cerevisiae. Appl Environ Microbiol 74:2043–2050

    Article  PubMed  CAS  Google Scholar 

  • Wisselink HW, Toirkens MJ, Berriel MRF, Winkler AA, van Dijken JP, Pronk JT, van Maris AJA (2007) Engineering of Saccharomyces cerevisiae for efficient anaerobic alcoholic fermentation of l-arabinose. Appl Environ Microbiol 73:4881–4891

    Article  PubMed  CAS  Google Scholar 

  • Wisselink HW, Toirkens MJ, Wu Q, Pronk JT, van Maris AJA (2009) Novel evolutionary engineering approach for accelerated utilization of glucose, xylose, and arabinose mixtures by engineered Saccharomyces cerevisiae strains. Appl Environ Microbiol 75:907–914

    Article  PubMed  CAS  Google Scholar 

  • Yermiyahu U, Ben-Gal A, Sarig P, Zipilevitch E (2007) Boron toxicity in grapevine (Vitis vinifera L.) in conjunction with salinity and rootstock effects. J Hortic Sci Biotechnol 82:547–554

    CAS  Google Scholar 

  • Yermiyahu U, Ben-Gal A, Keren R, Reid RJ (2008) Combined effect of salinity and excess boron on plant growth and yield. Plant Soil 304:73–87

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Burcu Turanlı-Yıldız for technical assistance, and Ali Dinler for help with PCA. This work was supported by National Boron Research Institute (BOREN-2008-Ç0180, PI: Z.P. Çakar).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Petek Çakar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Şen, M., Yılmaz, Ü., Baysal, A. et al. In vivo evolutionary engineering of a boron-resistant bacterium: Bacillus boroniphilus . Antonie van Leeuwenhoek 99, 825–835 (2011). https://doi.org/10.1007/s10482-011-9557-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-011-9557-2

Keywords

Navigation