Skip to main content

Advertisement

Log in

Ultrasound Modulates the Inflammatory Response and Promotes Muscle Regeneration in Injured Muscles

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was to examine the effect of ultrasound on inflammatory skeletal muscle in vitro and in vivo. C2C12 cells were cultured in medium with or without TNF-α or IL-1β. After stimulation with cytokines, the cells received ultrasound or sham exposure. Furthermore, the tibialis anterior (TA) muscle in C57BL/6 mice injured by cardiotoxin (CTX) were dissected after a series of ultrasound treatments and examined. Exposure of C2C12 cells to ultrasound resulted in down-regulation of cyclooxygenase-2 (COX-2) mRNA and protein expression induced by TNF-α or IL-1β, and up-regulated myogenin mRNA and protein depressed by TNF-α or IL-1β. In injured TA muscle induced by CTX, ultrasound caused increase of COX-2 mRNA at 1 day after ultrasound treatment, however, at day 5, reduction of COX-2 mRNA and protein. At day 5, ultrasound caused increase of myogenin mRNA and protein, increase of fast myosin protein, and increase of paired-box transcription factor 7 positive cells. At day 7, the cross-sectional area of myofibers in the ultrasound exposure side was significantly larger than that on the control side. In conclusion, ultrasound stimulation may be a better candidate as a medical remedy to promote myogenesis in inflammatory muscle states, such as muscle injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Acharyya, S., K. J. Ladner, L. L. Nelsen, J. Damrauer, P. J. Reiser, S. Swoap, et al. Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J. Clin. Invest. 114:370–378, 2004.

    PubMed  CAS  Google Scholar 

  2. Agarwal, S., J. Deschner, P. Long, A. Verma, C. Hofman, C. H. Evans, et al. Role of NF-kappaB transcription factors in antiinflammatory and proinflammatory actions of mechanical signals. Arthritis Rheum. 50:3541–3548, 2004.

    Article  PubMed  CAS  Google Scholar 

  3. Allen, R. E., and L. K. Boxhorn. Regulation of skeletal muscle satellite cell proliferation and differentiation by transforming growth factor-beta, insulin-like growth factor I, and fibroblast growth factor. J. Cell. Physiol. 138:311–315, 1989.

    Article  PubMed  CAS  Google Scholar 

  4. Azuma, Y., M. Ito, Y. Harada, H. Takagi, T. Ohta, and S. Jingushi. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J. Bone Miner. Res. 16:671–680, 2001.

    Article  PubMed  CAS  Google Scholar 

  5. Bondesen, B. A., S. T. Mills, K. M. Kegley, and G. K. Pavlath. The COX-2 pathway is essential during early stage of skeletal muscle regeneration. Am. J. Physiol. Cell Physiol. 287:475–483, 2004.

    Article  Google Scholar 

  6. Buckley, M. J., A. J. Banes, L. G. Levin, B. E. Sumpio, M. Sato, R. Jordan, et al. Osteoblasts increase their rate of division and align in response to cyclic, mechanical tension in vitro. Bone Miner. 4:225–236, 1988.

    PubMed  CAS  Google Scholar 

  7. Chan, Y. S., K. Y. Hsu, C. H. Kuo, S. D. Lee, S. C. Chen, W. J. Chen, et al. Using low-intensity pulsed ultrasound to improve muscle healing after laceration injury: an in vitro and in vivo study. Ultrasound Med. Biol. 36:743–751, 2010.

    Article  PubMed  Google Scholar 

  8. Chan, C. W., L. Qin, K. M. Lee, W. H. Cheung, J. C. Cheng, and K. S. Leung. Dose-dependent effect of low-intensity pulsed ultrasound on callus formation during rapid distraction osteogenesis. J. Orthop. Res. 24:2072–2079, 2006.

    Article  PubMed  Google Scholar 

  9. Chandran, R., T. J. Knobloch, M. Anghelina, and S. Agarwal. Biomechanical signals upregulate myogenic gene induction in the presence or absence of inflammation. Am. J. Physiol. Cell Physiol. 293:267–276, 2007.

    Article  Google Scholar 

  10. Claes, L., and B. Willie. The enhancement of bone regeneration by ultrasound. Prog. Biophys. Mol. Biol. 93:384–398, 2007.

    Article  PubMed  Google Scholar 

  11. Dalla-Bona, D. A., E. Tanaka, T. Inubushi, H. Oka, A. Ohta, H. Okada, et al. Cementoblast response to low- and high-intensity ultrasound. Arch. Oral Biol. 53:318–323, 2008.

    Article  PubMed  CAS  Google Scholar 

  12. Deasy, B. M., Z. Qu-Peterson, J. S. Greenberger, and J. Huard. Mechanisms of muscle stem cell expansion with cytokines. Stem Cells 20:50–60, 2002.

    Article  PubMed  CAS  Google Scholar 

  13. Eutwistle, A., D. H. Curtis, and R. J. Zalin. Myoblast fusion is regulated by a prostanoid of the one series independently of a rise in cyclic AMP. J. Cell Biol. 103:857–866, 1986.

    Article  Google Scholar 

  14. Fong, Y., L. L. Moldawer, M. Marano, H. Wei, A. Barber, K. Manogue, et al. Cachectin/TNF or IL-1 alpha induces cachexia with redistribution of body proteins. Am. J. Physiol. 256:659–665, 1989.

    Google Scholar 

  15. Gebauer, D., and J. Correll. Pulsed low-intensity ultrasound: a new salvage procedure for delayed unions and nonunions after leg lengthening in 23 children. J. Pediatr. Orthop. 6:750–754, 2005.

    Article  Google Scholar 

  16. Guttridge, D. C. Signaling pathways weigh in on decisions to make or break skeletal muscle. Curr. Opin. Clin. Nutr. Metab. Care 7:443–450, 2004.

    Article  PubMed  CAS  Google Scholar 

  17. Heckman, J. D., J. P. Ryaby, J. McCabe, J. J. Frey, and R. F. Kilcoyne. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J. Bone Joint Surg. Am. 74:26–34, 1994.

    Google Scholar 

  18. Inubushi, T., E. Tanaka, E. B. Rego, M. Kitagawa, A. Kawazoe, A. Ohta, et al. Effects of ultrasound on the proliferation and differentiation of cementoblast lineage cells. J. Periodontol. 79:1984–1990, 2008.

    Article  PubMed  CAS  Google Scholar 

  19. Iwata, A., S. Fuchioka, K. Hiraoka, M. Masuhara, and K. Kami. Characteristics of locomotion, muscle strength, and muscle tissue in regenerating rat skeletal muscles. Muscle Nerve 41:694–701, 2010.

    Article  PubMed  Google Scholar 

  20. Kokubu, T., N. Matsui, H. Fujioka, et al. Low intensity pulsed ultrasound exposure increases prostaglandin E2 production via the induction of cyclooxygenase-2 mRNA in mouse osteoblasts. Biochem. Biophys. Res. Commun. 256:284–287, 1999.

    Article  PubMed  CAS  Google Scholar 

  21. Lowe, D. A., and S. E. Alway. Stretch-induced myogenin, MyoD, and MRF4 expression and acute hypertrophy in quail slow-tonic muscle are not dependent upon satellite cell proliferation. Cell Tissue Res. 296:531–539, 1999.

    Article  PubMed  CAS  Google Scholar 

  22. Madhavan, S., M. Anghelina, B. Rath-Deschner, E. Wypasek, A. John, J. Deschner, et al. Biomechanical signals exert sustained attenuation of proinflammatory gene induction in articular chondrocytes. Osteoarthritis Cartilage 14:1023–1032, 2006.

    Article  PubMed  CAS  Google Scholar 

  23. Markert, C. D., M. A. Merrick, T. E. Kirby, and S. T. Devor. Nonthermal ultrasound and exercise in skeletal muscle regeneration. Arch. Phys. Med. Rehabil. 86:1304–1310, 2005.

    Article  PubMed  Google Scholar 

  24. Morioka, S., K. Goto, A. Kojima, T. Naito, Y. Matsuba, T. Akema, et al. Functional overloading facilitates the regeneration of injured soleus muscles in mice. J. Physiol. Sci. 58:397–404, 2008.

    Article  PubMed  CAS  Google Scholar 

  25. Naidu, P. S., D. C. Ludolph, R. Q. To, T. J. Hinterberger, and S. F. Konieczny. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Mol. Cell. Biol. 15:2707–2718, 1995.

    PubMed  CAS  Google Scholar 

  26. Nakamura, T., S. Fujihara, T. Katsura, K. Yamamoto, T. Inubushi, K. Tanimoto, et al. Effects of low-intensity pulsed ultrasound on the expression and activity of hyaluronan synthase and hyaluronidase in IL-1b-stimulated synovial cells. Ann. Biomed. Eng. 38:3363–3370, 2010.

    Article  PubMed  Google Scholar 

  27. Nakamura, T., S. Fujihara, K. Yamamoto-Nagata, T. Katsura, T. Inubushi, and E. Tanaka. Low-intensity pulsed ultrasound reduces the inflammatory activity of synovitis. Ann. Biomed. Eng. 39:2964–2971, 2011.

    Article  PubMed  Google Scholar 

  28. Pelosi, L., C. Giacinti, C. Nardis, G. Borsellino, E. Rizzuto, C. Nicoletti, et al. Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. FASEB J. 21:1393–1402, 2007.

    Article  PubMed  CAS  Google Scholar 

  29. Rantanen, J., O. Thorsson, P. Wollmer, T. Hurme, and H. Kalimo. Effect of therapeutic ultrasound on the regeneration of skeletal myofibers after experimental muscle injury. Am. J. Sport Med. 27:54–59, 1999.

    CAS  Google Scholar 

  30. Rauch, C., and P. T. Loughna. Cyclosporin-A inhibits stretch-induced changes in myosin heavy chain expression in C2C12 skeletal muscle cells. Cell Biochem. Funct. 24:55–61, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Rawls, A., M. R. Valdez, W. Zhang, J. Richardson, W. H. Klein, and E. N. Olson. Overlapping functions of the myogenic bHLH genes MRF4 and MyoD revealed in double mutant mice. Development 125:2349–2358, 1998.

    PubMed  CAS  Google Scholar 

  32. Rego, E. B., T. Inubushi, M. Miyauchi, A. Kawazoe, E. Tanaka, T. Takata, and K. Tanne. Ultrasound stimulation attenuates root resorption of rat replanted molars and impairs tumor necrosis factor-α signaling in vitro. J. Periodontal Res. 46:648–654, 2011.

    Article  PubMed  CAS  Google Scholar 

  33. Renno, A. C., R. L. Toma, S. M. Feitosa, K. Fernandes, P. S. Bossini, P. de Oliveira, et al. Comparative effects of low-intensity pulsed ultrasound and low-level laser therapy on injured skeletal muscle. Photomed. Laser Surg. 29:5–10, 2011.

    Article  PubMed  Google Scholar 

  34. Robertson, T. A., M. A. Maley, M. D. Grounds, and J. M. Papadimitriou. The role of macrophage in skeletal muscle regeneration with particular reference of chemotaxis. Exp. Cell Res. 207:321–331, 1993.

    Article  PubMed  CAS  Google Scholar 

  35. Sakai, N., N. Agata, M. Inoue-Miyazu, K. Kawakami, K. Kobayashi, M. Sokabe, et al. Involvement of PI3 K/Akt/TOR pathway in stretch-induced hypertrophy of myotube. Muscle Nerve 41:100–106, 2010.

    Article  Google Scholar 

  36. Sant’Anna, E. F., R. M. Leven, A. S. Virdi, and D. R. Sumner. Effect of low intensity pulsed ultrasound and BMP-2 on rat bone marrow stromal cell gene expression. J. Orthop. Res. 23:646–652, 2005.

    Article  PubMed  Google Scholar 

  37. Schultz, E., D. L. Jaryszak, and C. R. Valliere. Response of satellite cells to focal skeletal muscle injury. Muscle Nerve 8:217–222, 1985.

    Article  PubMed  CAS  Google Scholar 

  38. Schutzle, U. B., M. J. Wakelam, and D. Pette. Prostaglandins and cyclic AMP stimulate creatine kinase synthesis but not fusion in cultured embryonic chick muscle cells. Biochem. Biophy. Acta. 805:204–210, 1984.

    Article  CAS  Google Scholar 

  39. Seale, P., L. A. Sabourin, A. Girgis-Gabardo, A. Mansouri, P. Gruss, and M. E. Rudnicki. Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786, 2000.

    Article  PubMed  CAS  Google Scholar 

  40. Sena, K., R. M. Leven, K. Mazhar, D. R. Sumner, and A. S. Virdi. Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med. Biol. 31:703–708, 2005.

    Article  PubMed  Google Scholar 

  41. Shimazaki, A., K. Inui, Y. Azuma, N. Nishimura, and Y. Yamano. Low-intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits. J. Bone Joint Surg. Br. 82:1077–1082, 2000.

    Article  PubMed  CAS  Google Scholar 

  42. Shiraishi, R., C. Masaki, A. Toshinaga, T. Okinaga, T. Nishihara, N. Yamanaka, T. Nakamoto, and R. Hosokawa. The effects of low-intensity pulsed ultrasound exposure on gingival cells. J. Periodontol. 82:1498–1503, 2011.

    Article  PubMed  CAS  Google Scholar 

  43. Signori, L. U., S. T. da Costa, A. F. Neto, R. M. Pizzolotto, C. Beck, G. Sbruzzi, et al. Haematological effect of pulsed ultrasound in acute muscular inflammation in rats. Physiotherapy 97:163–169, 2011.

    Article  PubMed  Google Scholar 

  44. St. Pierre, B. A., and J. G. Tidball. Differential response of macrophage subpopulations to soleus muscle reloading after rat hindlimb suspension. J. Appl. Physiol. 77:290–297, 1994.

    PubMed  CAS  Google Scholar 

  45. Szelenyi, E. R., and M. L. Urso. Time-course analysis of injured skeletal muscle suggests a critical involvement of ERK1/2 signaling in the acute inflammatory response. Muscle Nerve 45:552–561, 2012.

    Article  PubMed  CAS  Google Scholar 

  46. Takakura, Y., N. Matsui, S. Yoshiya, H. Fujioka, H. Muratsu, M. Tsunoda, et al. Low-intensity pulsed ultrasound enhances early healing of medial collateral ligament injuries in rats. J. Ultrasound Med. 21:283–288, 2002.

    PubMed  Google Scholar 

  47. Ten Broek, R. W., S. Grefte, and J. W. Von den Hoff. Regulatory factor and cell populations involved in skeletal muscle regeneration. J. Cell. Physiol. 224:7–16, 2010.

    PubMed  CAS  Google Scholar 

  48. Yang, S., M. Alnaqeeb, H. Simpson, and G. Goldspink. Cloning and characterization of an IGF-1 isoform expressed in skeletal muscle subjected to stretch. J. Muscle Res. Cell Motil. 17:487–495, 1996.

    Article  PubMed  CAS  Google Scholar 

  49. Zalin, R. J. The role of hormones and prostanoids in the in vitro proliferation and differentiation of human myoblasts. Exp. Cell Res. 172:265–281, 1987.

    Article  PubMed  CAS  Google Scholar 

  50. Zhou, S., A. Schmelz, T. Seufferlein, Y. Li, J. Zhao, and M. G. Bachem. Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J. Biol. Chem. 279:54463–54469, 2004.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Atsumi Ohta and Hiroshi Yoshiwara for providing the ultrasound devices and technical support for the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Tanaka.

Additional information

Associate Editor Konstantinos Konstantopoulos oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagata, K., Nakamura, T., Fujihara, S. et al. Ultrasound Modulates the Inflammatory Response and Promotes Muscle Regeneration in Injured Muscles. Ann Biomed Eng 41, 1095–1105 (2013). https://doi.org/10.1007/s10439-013-0757-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0757-y

Keywords

Navigation