Skip to main content
Log in

Optimal Jacobian accumulation is NP-complete

  • FULL LENGTH PAPER
  • Published:
Mathematical Programming Submit manuscript

Abstract

We show that the problem of accumulating Jacobian matrices by using a minimal number of floating-point operations is NP-complete by reduction from Ensemble Computation. The proof makes use of the fact that, deviating from the state-of-the-art assumption, algebraic dependences can exist between the local partial derivatives. It follows immediately that the same problem for directional derivatives, adjoints, and higher derivatives is NP-complete, too.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Personal communication with Steihaug, T. Bergen University, Norway, and Griewank, A. at Humboldt University Berlin (2005)

  2. Baur W., Strassen V. (1983) The complexity of partial derivatives. Theoret. Comput. Sci. 22, 317–330

    Article  MATH  MathSciNet  Google Scholar 

  3. Berz, M., Bischof, C., Corliss, G., Griewank, A. (eds.) Computational differentiation: techniques, applications, and tools. In: Proceedings Series. SIAM Philadelphia (1996)

  4. Bischof, C., Haghighat, M.: Hierarchical approaches to automatic differentiation. In: [3], pp. 82–94

  5. Bücker, M., Corliss, G., Hovland, P., Naumann, U., Norris, B. (eds.) Automatic Differentiation: Applications, Theory, and Tools. Lecture Notes in Computational Science and Engineering, vol. 50. Springer, Berlin Heidelberg New York (2005)

  6. Corliss G., Faure C., Griewank A., Hascoët L., Naumann U. (eds) (2002) Automatic Differentiation of Algorithms – From Simulation to Optimization. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  7. Corliss, G., Griewank, A. (eds.) Automatic Differentiation: Theory, Implementation, and Application. Proceedings Series. SIAM Philadelphia (1991)

  8. Garey M., Johnson D. (1979) Computers and Intractability – A Guide to the Theory of NP-completeness. W. H. Freeman and Company, San Francisco

    MATH  Google Scholar 

  9. Giering, R., Kaminski, T.: Applying TAF to generate efficient derivative code of Fortran 77-95 programs. In: Proceedings of GAMM 2002, Augsburg, Germany (2002)

  10. Griewank A. (2000) Evaluating derivatives. Principles and techniques of algorithmic differentiation Frontiers in Applied Mathematics, vol 19. SIAM, Philadelphia

    Google Scholar 

  11. Griewank A., Juedes D., Utke J. (1996) ADOL–C, a package for the automatic differentiation of algorithms written in C/C++. ACM Trans. Math. Softw. 22(2): 131–167

    Article  MATH  Google Scholar 

  12. Griewank A., Naumann U. (2003) Accumulating Jacobians as chained sparse matrix products. Math. Prog. 3(95): 555–571

    Article  MathSciNet  Google Scholar 

  13. Griewank, A., Reese, S.: On the calculation of Jacobian matrices by the Markovitz rule. In: [7], pp. 126–135

  14. Griewank, A., Vogel, O.: Analysis and exploitation of Jacobian scarcity. In: Proceedings of HPSC Hanoi. Springer, Berlin Heidelberg New York (2003)

  15. Hascoët, L., Pascual, V.: Tapenade 2.1 user’s guide. Technical report 300, INRIA (2004)

  16. Heath M. (1998) Scientific Computing. An Introductory Survey. McGraw-Hill, New York

    Google Scholar 

  17. Kelley, C.: Solving Nonlinear Equations with Newton’s Method. SIAM Philadelphia (2003)

  18. Naumann, U.: Elimination techniques for cheap Jacobians. In: [6], chap. 29, pp. 247–253 (2001)

  19. Naumann U. (2002) Cheaper Jacobians by simulated annealing. SIAM J. Opt. 13(3): 660–674

    Article  MATH  MathSciNet  Google Scholar 

  20. Naumann U. (2004) Optimal accumulation of Jacobian matrices by elimination methods on the dual computational graph. Math. Prog. 3(99): 399–421

    Article  MathSciNet  Google Scholar 

  21. Naumann U., Utke J. (2005) Optimality-preserving elimination of linearities in Jacobian accumulation. Electron. Trans. Numer. Anal. (ETNA) 21, 134–150

    MATH  MathSciNet  Google Scholar 

  22. Naumann, U., Utke, J., Wunsch, C., Hill, C., Heimbach, P., Fagan, M., Tallent, N., Strout, M.: Adjoint code by source transformation with open ad/f. In: Proceedings of the European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006). TU Delft (2006)

  23. Speelpenning, B.: Compiling fast partial derivatives of functions given by algorithms. Ph.D. Thesis, University of Chicago (1980)

  24. Walther, A.: Program reversal schedules for single- and multi-processor machines. Ph.D. Thesis, Institute of Scientific Computing, Technical University Dresden (1999)

  25. Walther, A., Griewank, A.: New results on program reversals. In: [6], chapt. 28, pp. 237–243. Springer, Berlin Heidelberg New York (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Naumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumann, U. Optimal Jacobian accumulation is NP-complete. Math. Program. 112, 427–441 (2008). https://doi.org/10.1007/s10107-006-0042-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-006-0042-z

Keywords

Mathematics Subject Classification (2000)

Navigation